L(s) = 1 | + 4·5-s − 8·7-s − 4·11-s − 6·13-s + 6·17-s + 4·19-s + 4·23-s + 11·25-s − 32·35-s − 8·37-s − 14·41-s − 16·43-s − 8·47-s + 34·49-s − 14·53-s − 16·55-s − 20·59-s − 24·65-s − 16·71-s + 32·77-s − 32·83-s + 24·85-s + 14·89-s + 48·91-s + 16·95-s + 12·103-s − 24·107-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 3.02·7-s − 1.20·11-s − 1.66·13-s + 1.45·17-s + 0.917·19-s + 0.834·23-s + 11/5·25-s − 5.40·35-s − 1.31·37-s − 2.18·41-s − 2.43·43-s − 1.16·47-s + 34/7·49-s − 1.92·53-s − 2.15·55-s − 2.60·59-s − 2.97·65-s − 1.89·71-s + 3.64·77-s − 3.51·83-s + 2.60·85-s + 1.48·89-s + 5.03·91-s + 1.64·95-s + 1.18·103-s − 2.32·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5475600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5475600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.027074940449329767547232396564, −8.592418190755540312639416511759, −7.898275587303619777552339454912, −7.60978486535125028838948782598, −6.99329622354881268789926514028, −6.84464896533915457673292007035, −6.49361173029117896295245680310, −6.13451951016493620510389181412, −5.53450002656236067441915310135, −5.45101542749872187963752009334, −4.89493559679637309286733959321, −4.71715910682561326586774216120, −3.40730708516430712594009986859, −3.27823051428770651340401643859, −2.88847212116849012526576496884, −2.86467461739435012030812574016, −1.82920143743077499597703524280, −1.45068759366909346772990994053, 0, 0,
1.45068759366909346772990994053, 1.82920143743077499597703524280, 2.86467461739435012030812574016, 2.88847212116849012526576496884, 3.27823051428770651340401643859, 3.40730708516430712594009986859, 4.71715910682561326586774216120, 4.89493559679637309286733959321, 5.45101542749872187963752009334, 5.53450002656236067441915310135, 6.13451951016493620510389181412, 6.49361173029117896295245680310, 6.84464896533915457673292007035, 6.99329622354881268789926514028, 7.60978486535125028838948782598, 7.898275587303619777552339454912, 8.592418190755540312639416511759, 9.027074940449329767547232396564