Properties

Label 2340.2.bp.c.1513.1
Level $2340$
Weight $2$
Character 2340.1513
Analytic conductor $18.685$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(1477,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.1477"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.bp (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,4,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1513.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2340.1513
Dual form 2340.2.bp.c.1477.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 1.00000i) q^{5} -4.00000 q^{7} +(-2.00000 - 2.00000i) q^{11} +(-3.00000 - 2.00000i) q^{13} +(3.00000 + 3.00000i) q^{17} +(2.00000 + 2.00000i) q^{19} +(2.00000 - 2.00000i) q^{23} +(3.00000 - 4.00000i) q^{25} +(-8.00000 + 4.00000i) q^{35} -4.00000 q^{37} +(-7.00000 + 7.00000i) q^{41} +(-8.00000 + 8.00000i) q^{43} -4.00000 q^{47} +9.00000 q^{49} +(-7.00000 - 7.00000i) q^{53} +(-6.00000 - 2.00000i) q^{55} +(-10.0000 + 10.0000i) q^{59} +(-8.00000 - 1.00000i) q^{65} -4.00000i q^{67} +(-8.00000 + 8.00000i) q^{71} +10.0000i q^{73} +(8.00000 + 8.00000i) q^{77} -4.00000i q^{79} -16.0000 q^{83} +(9.00000 + 3.00000i) q^{85} +(7.00000 - 7.00000i) q^{89} +(12.0000 + 8.00000i) q^{91} +(6.00000 + 2.00000i) q^{95} -12.0000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 8 q^{7} - 4 q^{11} - 6 q^{13} + 6 q^{17} + 4 q^{19} + 4 q^{23} + 6 q^{25} - 16 q^{35} - 8 q^{37} - 14 q^{41} - 16 q^{43} - 8 q^{47} + 18 q^{49} - 14 q^{53} - 12 q^{55} - 20 q^{59} - 16 q^{65}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 2.00000i −0.603023 0.603023i 0.338091 0.941113i \(-0.390219\pi\)
−0.941113 + 0.338091i \(0.890219\pi\)
\(12\) 0 0
\(13\) −3.00000 2.00000i −0.832050 0.554700i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.00000 + 3.00000i 0.727607 + 0.727607i 0.970143 0.242536i \(-0.0779791\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 2.00000 + 2.00000i 0.458831 + 0.458831i 0.898272 0.439440i \(-0.144823\pi\)
−0.439440 + 0.898272i \(0.644823\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.00000 2.00000i 0.417029 0.417029i −0.467150 0.884178i \(-0.654719\pi\)
0.884178 + 0.467150i \(0.154719\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.00000 + 4.00000i −1.35225 + 0.676123i
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.00000 + 7.00000i −1.09322 + 1.09322i −0.0980332 + 0.995183i \(0.531255\pi\)
−0.995183 + 0.0980332i \(0.968745\pi\)
\(42\) 0 0
\(43\) −8.00000 + 8.00000i −1.21999 + 1.21999i −0.252353 + 0.967635i \(0.581205\pi\)
−0.967635 + 0.252353i \(0.918795\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.00000 7.00000i −0.961524 0.961524i 0.0377628 0.999287i \(-0.487977\pi\)
−0.999287 + 0.0377628i \(0.987977\pi\)
\(54\) 0 0
\(55\) −6.00000 2.00000i −0.809040 0.269680i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.0000 + 10.0000i −1.30189 + 1.30189i −0.374772 + 0.927117i \(0.622279\pi\)
−0.927117 + 0.374772i \(0.877721\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.00000 1.00000i −0.992278 0.124035i
\(66\) 0 0
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 + 8.00000i −0.949425 + 0.949425i −0.998781 0.0493559i \(-0.984283\pi\)
0.0493559 + 0.998781i \(0.484283\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.00000 + 8.00000i 0.911685 + 0.911685i
\(78\) 0 0
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) 9.00000 + 3.00000i 0.976187 + 0.325396i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.00000 7.00000i 0.741999 0.741999i −0.230964 0.972962i \(-0.574188\pi\)
0.972962 + 0.230964i \(0.0741879\pi\)
\(90\) 0 0
\(91\) 12.0000 + 8.00000i 1.25794 + 0.838628i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.00000 + 2.00000i 0.615587 + 0.205196i
\(96\) 0 0
\(97\) 12.0000i 1.21842i −0.793011 0.609208i \(-0.791488\pi\)
0.793011 0.609208i \(-0.208512\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000i 0.597022i −0.954406 0.298511i \(-0.903510\pi\)
0.954406 0.298511i \(-0.0964900\pi\)
\(102\) 0 0
\(103\) 6.00000 6.00000i 0.591198 0.591198i −0.346757 0.937955i \(-0.612717\pi\)
0.937955 + 0.346757i \(0.112717\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 + 12.0000i −1.16008 + 1.16008i −0.175627 + 0.984457i \(0.556195\pi\)
−0.984457 + 0.175627i \(0.943805\pi\)
\(108\) 0 0
\(109\) 13.0000 + 13.0000i 1.24517 + 1.24517i 0.957826 + 0.287348i \(0.0927736\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.00000 + 1.00000i 0.0940721 + 0.0940721i 0.752577 0.658505i \(-0.228811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 2.00000 6.00000i 0.186501 0.559503i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.0000 12.0000i −1.10004 1.10004i
\(120\) 0 0
\(121\) 3.00000i 0.272727i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) −10.0000 10.0000i −0.887357 0.887357i 0.106912 0.994268i \(-0.465904\pi\)
−0.994268 + 0.106912i \(0.965904\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) −8.00000 8.00000i −0.693688 0.693688i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i −0.860818 0.508913i \(-0.830047\pi\)
0.860818 0.508913i \(-0.169953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.00000 + 10.0000i 0.167248 + 0.836242i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 17.0000 + 17.0000i 1.39269 + 1.39269i 0.819232 + 0.573462i \(0.194400\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) 0 0
\(151\) 4.00000 + 4.00000i 0.325515 + 0.325515i 0.850878 0.525363i \(-0.176070\pi\)
−0.525363 + 0.850878i \(0.676070\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3.00000 + 3.00000i −0.239426 + 0.239426i −0.816612 0.577186i \(-0.804151\pi\)
0.577186 + 0.816612i \(0.304151\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.00000 + 8.00000i −0.630488 + 0.630488i
\(162\) 0 0
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.0000 15.0000i 1.14043 1.14043i 0.152057 0.988372i \(-0.451410\pi\)
0.988372 0.152057i \(-0.0485898\pi\)
\(174\) 0 0
\(175\) −12.0000 + 16.0000i −0.907115 + 1.20949i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) 10.0000i 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.00000 + 4.00000i −0.588172 + 0.294086i
\(186\) 0 0
\(187\) 12.0000i 0.877527i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 4.00000i 0.287926i −0.989583 0.143963i \(-0.954015\pi\)
0.989583 0.143963i \(-0.0459847\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −7.00000 + 21.0000i −0.488901 + 1.46670i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.00000 + 24.0000i −0.545595 + 1.63679i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.00000 15.0000i −0.201802 1.00901i
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.00000i 0.530979i −0.964114 0.265489i \(-0.914466\pi\)
0.964114 0.265489i \(-0.0855335\pi\)
\(228\) 0 0
\(229\) −13.0000 + 13.0000i −0.859064 + 0.859064i −0.991228 0.132164i \(-0.957808\pi\)
0.132164 + 0.991228i \(0.457808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.00000 + 5.00000i −0.327561 + 0.327561i −0.851658 0.524097i \(-0.824403\pi\)
0.524097 + 0.851658i \(0.324403\pi\)
\(234\) 0 0
\(235\) −8.00000 + 4.00000i −0.521862 + 0.260931i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.00000 8.00000i −0.517477 0.517477i 0.399330 0.916807i \(-0.369243\pi\)
−0.916807 + 0.399330i \(0.869243\pi\)
\(240\) 0 0
\(241\) −11.0000 11.0000i −0.708572 0.708572i 0.257663 0.966235i \(-0.417048\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 18.0000 9.00000i 1.14998 0.574989i
\(246\) 0 0
\(247\) −2.00000 10.0000i −0.127257 0.636285i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.00000i 0.252478i 0.992000 + 0.126239i \(0.0402906\pi\)
−0.992000 + 0.126239i \(0.959709\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.00000 + 7.00000i 0.436648 + 0.436648i 0.890882 0.454234i \(-0.150087\pi\)
−0.454234 + 0.890882i \(0.650087\pi\)
\(258\) 0 0
\(259\) 16.0000 0.994192
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.0000 10.0000i −0.616626 0.616626i 0.328038 0.944664i \(-0.393613\pi\)
−0.944664 + 0.328038i \(0.893613\pi\)
\(264\) 0 0
\(265\) −21.0000 7.00000i −1.29002 0.430007i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.00000i 0.121942i 0.998140 + 0.0609711i \(0.0194197\pi\)
−0.998140 + 0.0609711i \(0.980580\pi\)
\(270\) 0 0
\(271\) −12.0000 12.0000i −0.728948 0.728948i 0.241462 0.970410i \(-0.422373\pi\)
−0.970410 + 0.241462i \(0.922373\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.0000 + 2.00000i −0.844232 + 0.120605i
\(276\) 0 0
\(277\) 9.00000 + 9.00000i 0.540758 + 0.540758i 0.923751 0.382993i \(-0.125107\pi\)
−0.382993 + 0.923751i \(0.625107\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.00000 7.00000i −0.417585 0.417585i 0.466786 0.884371i \(-0.345412\pi\)
−0.884371 + 0.466786i \(0.845412\pi\)
\(282\) 0 0
\(283\) 12.0000 12.0000i 0.713326 0.713326i −0.253904 0.967230i \(-0.581715\pi\)
0.967230 + 0.253904i \(0.0817146\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 28.0000 28.0000i 1.65279 1.65279i
\(288\) 0 0
\(289\) 1.00000i 0.0588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 28.0000i 1.63578i 0.575376 + 0.817889i \(0.304856\pi\)
−0.575376 + 0.817889i \(0.695144\pi\)
\(294\) 0 0
\(295\) −10.0000 + 30.0000i −0.582223 + 1.74667i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.0000 + 2.00000i −0.578315 + 0.115663i
\(300\) 0 0
\(301\) 32.0000 32.0000i 1.84445 1.84445i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000i 0.680458i −0.940343 0.340229i \(-0.889495\pi\)
0.940343 0.340229i \(-0.110505\pi\)
\(312\) 0 0
\(313\) −9.00000 9.00000i −0.508710 0.508710i 0.405420 0.914130i \(-0.367125\pi\)
−0.914130 + 0.405420i \(0.867125\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.0000i 0.673987i −0.941507 0.336994i \(-0.890590\pi\)
0.941507 0.336994i \(-0.109410\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) −17.0000 + 6.00000i −0.942990 + 0.332820i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 18.0000 18.0000i 0.989369 0.989369i −0.0105746 0.999944i \(-0.503366\pi\)
0.999944 + 0.0105746i \(0.00336607\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.00000 8.00000i −0.218543 0.437087i
\(336\) 0 0
\(337\) −9.00000 9.00000i −0.490261 0.490261i 0.418127 0.908388i \(-0.362687\pi\)
−0.908388 + 0.418127i \(0.862687\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −8.00000 + 8.00000i −0.429463 + 0.429463i −0.888445 0.458983i \(-0.848214\pi\)
0.458983 + 0.888445i \(0.348214\pi\)
\(348\) 0 0
\(349\) 7.00000 7.00000i 0.374701 0.374701i −0.494485 0.869186i \(-0.664643\pi\)
0.869186 + 0.494485i \(0.164643\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −34.0000 −1.80964 −0.904819 0.425797i \(-0.859994\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) −8.00000 + 24.0000i −0.424596 + 1.27379i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.00000 + 8.00000i −0.422224 + 0.422224i −0.885969 0.463745i \(-0.846505\pi\)
0.463745 + 0.885969i \(0.346505\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 10.0000 + 20.0000i 0.523424 + 1.04685i
\(366\) 0 0
\(367\) −2.00000 + 2.00000i −0.104399 + 0.104399i −0.757377 0.652978i \(-0.773519\pi\)
0.652978 + 0.757377i \(0.273519\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 28.0000 + 28.0000i 1.45369 + 1.45369i
\(372\) 0 0
\(373\) −15.0000 15.0000i −0.776671 0.776671i 0.202593 0.979263i \(-0.435063\pi\)
−0.979263 + 0.202593i \(0.935063\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 18.0000 + 18.0000i 0.924598 + 0.924598i 0.997350 0.0727522i \(-0.0231782\pi\)
−0.0727522 + 0.997350i \(0.523178\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.0000 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(384\) 0 0
\(385\) 24.0000 + 8.00000i 1.22315 + 0.407718i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.00000 8.00000i −0.201262 0.402524i
\(396\) 0 0
\(397\) 28.0000 1.40528 0.702640 0.711546i \(-0.252005\pi\)
0.702640 + 0.711546i \(0.252005\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.00000 + 1.00000i 0.0499376 + 0.0499376i 0.731635 0.681697i \(-0.238758\pi\)
−0.681697 + 0.731635i \(0.738758\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.00000 + 8.00000i 0.396545 + 0.396545i
\(408\) 0 0
\(409\) 21.0000 + 21.0000i 1.03838 + 1.03838i 0.999233 + 0.0391498i \(0.0124650\pi\)
0.0391498 + 0.999233i \(0.487535\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 40.0000 40.0000i 1.96827 1.96827i
\(414\) 0 0
\(415\) −32.0000 + 16.0000i −1.57082 + 0.785409i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −19.0000 + 19.0000i −0.926003 + 0.926003i −0.997445 0.0714415i \(-0.977240\pi\)
0.0714415 + 0.997445i \(0.477240\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 21.0000 3.00000i 1.01865 0.145521i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 24.0000 24.0000i 1.15604 1.15604i 0.170720 0.985320i \(-0.445391\pi\)
0.985320 0.170720i \(-0.0546093\pi\)
\(432\) 0 0
\(433\) −27.0000 + 27.0000i −1.29754 + 1.29754i −0.367523 + 0.930015i \(0.619794\pi\)
−0.930015 + 0.367523i \(0.880206\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) 7.00000 21.0000i 0.331832 0.995495i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.00000 7.00000i 0.330350 0.330350i −0.522369 0.852720i \(-0.674952\pi\)
0.852720 + 0.522369i \(0.174952\pi\)
\(450\) 0 0
\(451\) 28.0000 1.31847
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 32.0000 + 4.00000i 1.50018 + 0.187523i
\(456\) 0 0
\(457\) 4.00000i 0.187112i −0.995614 0.0935561i \(-0.970177\pi\)
0.995614 0.0935561i \(-0.0298234\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11.0000 + 11.0000i −0.512321 + 0.512321i −0.915237 0.402916i \(-0.867997\pi\)
0.402916 + 0.915237i \(0.367997\pi\)
\(462\) 0 0
\(463\) 20.0000i 0.929479i −0.885448 0.464739i \(-0.846148\pi\)
0.885448 0.464739i \(-0.153852\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.0000 20.0000i −0.925490 0.925490i 0.0719207 0.997410i \(-0.477087\pi\)
−0.997410 + 0.0719207i \(0.977087\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 32.0000 1.47136
\(474\) 0 0
\(475\) 14.0000 2.00000i 0.642364 0.0917663i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.00000 + 8.00000i −0.365529 + 0.365529i −0.865844 0.500314i \(-0.833218\pi\)
0.500314 + 0.865844i \(0.333218\pi\)
\(480\) 0 0
\(481\) 12.0000 + 8.00000i 0.547153 + 0.364769i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.0000 24.0000i −0.544892 1.08978i
\(486\) 0 0
\(487\) 16.0000i 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.0000i 1.08310i −0.840667 0.541552i \(-0.817837\pi\)
0.840667 0.541552i \(-0.182163\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.0000 32.0000i 1.43540 1.43540i
\(498\) 0 0
\(499\) 2.00000 + 2.00000i 0.0895323 + 0.0895323i 0.750454 0.660922i \(-0.229835\pi\)
−0.660922 + 0.750454i \(0.729835\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.0000 + 18.0000i 0.802580 + 0.802580i 0.983498 0.180918i \(-0.0579068\pi\)
−0.180918 + 0.983498i \(0.557907\pi\)
\(504\) 0 0
\(505\) −6.00000 12.0000i −0.266996 0.533993i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −9.00000 9.00000i −0.398918 0.398918i 0.478933 0.877851i \(-0.341024\pi\)
−0.877851 + 0.478933i \(0.841024\pi\)
\(510\) 0 0
\(511\) 40.0000i 1.76950i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.00000 18.0000i 0.264392 0.793175i
\(516\) 0 0
\(517\) 8.00000 + 8.00000i 0.351840 + 0.351840i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 0 0
\(523\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 15.0000i 0.652174i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 35.0000 7.00000i 1.51602 0.303204i
\(534\) 0 0
\(535\) −12.0000 + 36.0000i −0.518805 + 1.55642i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.0000 18.0000i −0.775315 0.775315i
\(540\) 0 0
\(541\) −29.0000 29.0000i −1.24681 1.24681i −0.957122 0.289685i \(-0.906449\pi\)
−0.289685 0.957122i \(-0.593551\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 39.0000 + 13.0000i 1.67058 + 0.556859i
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.0000 1.10166 0.550828 0.834619i \(-0.314312\pi\)
0.550828 + 0.834619i \(0.314312\pi\)
\(558\) 0 0
\(559\) 40.0000 8.00000i 1.69182 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20.0000 + 20.0000i −0.842900 + 0.842900i −0.989235 0.146336i \(-0.953252\pi\)
0.146336 + 0.989235i \(0.453252\pi\)
\(564\) 0 0
\(565\) 3.00000 + 1.00000i 0.126211 + 0.0420703i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.0000 0.754599 0.377300 0.926091i \(-0.376853\pi\)
0.377300 + 0.926091i \(0.376853\pi\)
\(570\) 0 0
\(571\) 8.00000i 0.334790i 0.985890 + 0.167395i \(0.0535355\pi\)
−0.985890 + 0.167395i \(0.946465\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.00000 14.0000i −0.0834058 0.583840i
\(576\) 0 0
\(577\) 30.0000i 1.24892i −0.781058 0.624458i \(-0.785320\pi\)
0.781058 0.624458i \(-0.214680\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 64.0000 2.65517
\(582\) 0 0
\(583\) 28.0000i 1.15964i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.0000i 0.739171i −0.929197 0.369586i \(-0.879500\pi\)
0.929197 0.369586i \(-0.120500\pi\)
\(594\) 0 0
\(595\) −36.0000 12.0000i −1.47586 0.491952i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 48.0000i 1.96123i 0.195952 + 0.980613i \(0.437220\pi\)
−0.195952 + 0.980613i \(0.562780\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.00000 6.00000i −0.121967 0.243935i
\(606\) 0 0
\(607\) 2.00000 2.00000i 0.0811775 0.0811775i −0.665352 0.746530i \(-0.731719\pi\)
0.746530 + 0.665352i \(0.231719\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 + 8.00000i 0.485468 + 0.323645i
\(612\) 0 0
\(613\) −6.00000 −0.242338 −0.121169 0.992632i \(-0.538664\pi\)
−0.121169 + 0.992632i \(0.538664\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.0000i 0.402585i −0.979531 0.201292i \(-0.935486\pi\)
0.979531 0.201292i \(-0.0645141\pi\)
\(618\) 0 0
\(619\) 18.0000 18.0000i 0.723481 0.723481i −0.245831 0.969313i \(-0.579061\pi\)
0.969313 + 0.245831i \(0.0790610\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −28.0000 + 28.0000i −1.12180 + 1.12180i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 12.0000i −0.478471 0.478471i
\(630\) 0 0
\(631\) −4.00000 4.00000i −0.159237 0.159237i 0.622991 0.782229i \(-0.285917\pi\)
−0.782229 + 0.622991i \(0.785917\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −30.0000 10.0000i −1.19051 0.396838i
\(636\) 0 0
\(637\) −27.0000 18.0000i −1.06978 0.713186i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 26.0000i 1.02694i −0.858108 0.513469i \(-0.828360\pi\)
0.858108 0.513469i \(-0.171640\pi\)
\(642\) 0 0
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −22.0000 22.0000i −0.864909 0.864909i 0.126994 0.991903i \(-0.459467\pi\)
−0.991903 + 0.126994i \(0.959467\pi\)
\(648\) 0 0
\(649\) 40.0000 1.57014
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.00000 7.00000i −0.273931 0.273931i 0.556749 0.830681i \(-0.312048\pi\)
−0.830681 + 0.556749i \(0.812048\pi\)
\(654\) 0 0
\(655\) −16.0000 + 8.00000i −0.625172 + 0.312586i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.00000i 0.311636i −0.987786 0.155818i \(-0.950199\pi\)
0.987786 0.155818i \(-0.0498013\pi\)
\(660\) 0 0
\(661\) −5.00000 5.00000i −0.194477 0.194477i 0.603150 0.797628i \(-0.293912\pi\)
−0.797628 + 0.603150i \(0.793912\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24.0000 8.00000i −0.930680 0.310227i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −17.0000 + 17.0000i −0.655302 + 0.655302i −0.954265 0.298963i \(-0.903359\pi\)
0.298963 + 0.954265i \(0.403359\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.0000 + 15.0000i −0.576497 + 0.576497i −0.933936 0.357439i \(-0.883650\pi\)
0.357439 + 0.933936i \(0.383650\pi\)
\(678\) 0 0
\(679\) 48.0000i 1.84207i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 24.0000i 0.918334i 0.888350 + 0.459167i \(0.151852\pi\)
−0.888350 + 0.459167i \(0.848148\pi\)
\(684\) 0 0
\(685\) −24.0000 + 12.0000i −0.916993 + 0.458496i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.00000 + 35.0000i 0.266679 + 1.33339i
\(690\) 0 0
\(691\) 26.0000 26.0000i 0.989087 0.989087i −0.0108545 0.999941i \(-0.503455\pi\)
0.999941 + 0.0108545i \(0.00345515\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.0000 24.0000i −0.455186 0.910372i
\(696\) 0 0
\(697\) −42.0000 −1.59086
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 46.0000i 1.73740i 0.495342 + 0.868698i \(0.335043\pi\)
−0.495342 + 0.868698i \(0.664957\pi\)
\(702\) 0 0
\(703\) −8.00000 8.00000i −0.301726 0.301726i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.0000i 0.902613i
\(708\) 0 0
\(709\) −29.0000 + 29.0000i −1.08912 + 1.08912i −0.0934984 + 0.995619i \(0.529805\pi\)
−0.995619 + 0.0934984i \(0.970195\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 14.0000 + 18.0000i 0.523570 + 0.673162i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) 0 0
\(721\) −24.0000 + 24.0000i −0.893807 + 0.893807i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −30.0000 30.0000i −1.11264 1.11264i −0.992793 0.119846i \(-0.961760\pi\)
−0.119846 0.992793i \(-0.538240\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −48.0000 −1.77534
\(732\) 0 0
\(733\) 42.0000 1.55131 0.775653 0.631160i \(-0.217421\pi\)
0.775653 + 0.631160i \(0.217421\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 + 8.00000i −0.294684 + 0.294684i
\(738\) 0 0
\(739\) 18.0000 18.0000i 0.662141 0.662141i −0.293744 0.955884i \(-0.594901\pi\)
0.955884 + 0.293744i \(0.0949012\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.00000 0.293492 0.146746 0.989174i \(-0.453120\pi\)
0.146746 + 0.989174i \(0.453120\pi\)
\(744\) 0 0
\(745\) 51.0000 + 17.0000i 1.86850 + 0.622832i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 48.0000 48.0000i 1.75388 1.75388i
\(750\) 0 0
\(751\) 32.0000i 1.16770i 0.811863 + 0.583848i \(0.198454\pi\)
−0.811863 + 0.583848i \(0.801546\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0000 + 4.00000i 0.436725 + 0.145575i
\(756\) 0 0
\(757\) 21.0000 21.0000i 0.763258 0.763258i −0.213652 0.976910i \(-0.568536\pi\)
0.976910 + 0.213652i \(0.0685358\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.0000 + 13.0000i 0.471250 + 0.471250i 0.902319 0.431069i \(-0.141864\pi\)
−0.431069 + 0.902319i \(0.641864\pi\)
\(762\) 0 0
\(763\) −52.0000 52.0000i −1.88253 1.88253i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 50.0000 10.0000i 1.80540 0.361079i
\(768\) 0 0
\(769\) −27.0000 27.0000i −0.973645 0.973645i 0.0260166 0.999662i \(-0.491718\pi\)
−0.999662 + 0.0260166i \(0.991718\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −50.0000 −1.79838 −0.899188 0.437564i \(-0.855842\pi\)
−0.899188 + 0.437564i \(0.855842\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −28.0000 −1.00320
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.00000 + 9.00000i −0.107075 + 0.321224i
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −4.00000 4.00000i −0.142224 0.142224i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13.0000 13.0000i −0.460484 0.460484i 0.438330 0.898814i \(-0.355570\pi\)
−0.898814 + 0.438330i \(0.855570\pi\)
\(798\) 0 0
\(799\) −12.0000 12.0000i −0.424529 0.424529i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 20.0000 20.0000i 0.705785 0.705785i
\(804\) 0 0
\(805\) −8.00000 + 24.0000i −0.281963 + 0.845889i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 48.0000i 1.68759i −0.536666 0.843795i \(-0.680316\pi\)
0.536666 0.843795i \(-0.319684\pi\)
\(810\) 0 0
\(811\) −22.0000 + 22.0000i −0.772524 + 0.772524i −0.978547 0.206023i \(-0.933948\pi\)
0.206023 + 0.978547i \(0.433948\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.0000 + 32.0000i 0.560456 + 1.12091i
\(816\) 0 0
\(817\) −32.0000 −1.11954
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −29.0000 + 29.0000i −1.01211 + 1.01211i −0.0121812 + 0.999926i \(0.503877\pi\)
−0.999926 + 0.0121812i \(0.996123\pi\)
\(822\) 0 0
\(823\) −6.00000 + 6.00000i −0.209147 + 0.209147i −0.803905 0.594758i \(-0.797248\pi\)
0.594758 + 0.803905i \(0.297248\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 40.0000 1.38926 0.694629 0.719368i \(-0.255569\pi\)
0.694629 + 0.719368i \(0.255569\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 27.0000 + 27.0000i 0.935495 + 0.935495i
\(834\) 0 0
\(835\) −24.0000 + 12.0000i −0.830554 + 0.415277i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 22.0000 + 19.0000i 0.756823 + 0.653620i
\(846\) 0 0
\(847\) 12.0000i 0.412325i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.00000 + 8.00000i −0.274236 + 0.274236i
\(852\) 0 0
\(853\) 14.0000i 0.479351i 0.970853 + 0.239675i \(0.0770410\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.0000 11.0000i −0.375753 0.375753i 0.493814 0.869567i \(-0.335602\pi\)
−0.869567 + 0.493814i \(0.835602\pi\)
\(858\) 0 0
\(859\) 16.0000i 0.545913i 0.962026 + 0.272956i \(0.0880015\pi\)
−0.962026 + 0.272956i \(0.911998\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.00000 −0.136162 −0.0680808 0.997680i \(-0.521688\pi\)
−0.0680808 + 0.997680i \(0.521688\pi\)
\(864\) 0 0
\(865\) 15.0000 45.0000i 0.510015 1.53005i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.00000 + 8.00000i −0.271381 + 0.271381i
\(870\) 0 0
\(871\) −8.00000 + 12.0000i −0.271070 + 0.406604i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.00000 + 44.0000i −0.270449 + 1.48747i
\(876\) 0 0
\(877\) 20.0000i 0.675352i −0.941262 0.337676i \(-0.890359\pi\)
0.941262 0.337676i \(-0.109641\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 56.0000i 1.88669i −0.331816 0.943344i \(-0.607661\pi\)
0.331816 0.943344i \(-0.392339\pi\)
\(882\) 0 0
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.0000 + 10.0000i −0.335767 + 0.335767i −0.854772 0.519004i \(-0.826303\pi\)
0.519004 + 0.854772i \(0.326303\pi\)
\(888\) 0 0
\(889\) 40.0000 + 40.0000i 1.34156 + 1.34156i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −8.00000 8.00000i −0.267710 0.267710i
\(894\) 0 0
\(895\) 32.0000 16.0000i 1.06964 0.534821i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 42.0000i 1.39922i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.0000 20.0000i −0.332411 0.664822i
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 20.0000 0.662630 0.331315 0.943520i \(-0.392508\pi\)
0.331315 + 0.943520i \(0.392508\pi\)
\(912\) 0 0
\(913\) 32.0000 + 32.0000i 1.05905 + 1.05905i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 32.0000 1.05673
\(918\) 0 0
\(919\) 40.0000i 1.31948i −0.751495 0.659739i \(-0.770667\pi\)
0.751495 0.659739i \(-0.229333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 40.0000 8.00000i 1.31662 0.263323i
\(924\) 0 0
\(925\) −12.0000 + 16.0000i −0.394558 + 0.526077i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15.0000 15.0000i −0.492134 0.492134i 0.416844 0.908978i \(-0.363136\pi\)
−0.908978 + 0.416844i \(0.863136\pi\)
\(930\) 0 0
\(931\) 18.0000 + 18.0000i 0.589926 + 0.589926i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.0000 24.0000i −0.392442 0.784884i
\(936\) 0 0
\(937\) −11.0000 + 11.0000i −0.359354 + 0.359354i −0.863575 0.504221i \(-0.831780\pi\)
0.504221 + 0.863575i \(0.331780\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.00000 5.00000i 0.162995 0.162995i −0.620897 0.783892i \(-0.713231\pi\)
0.783892 + 0.620897i \(0.213231\pi\)
\(942\) 0 0
\(943\) 28.0000i 0.911805i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.00000 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(948\) 0 0
\(949\) 20.0000 30.0000i 0.649227 0.973841i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.0000 11.0000i 0.356325 0.356325i −0.506131 0.862456i \(-0.668925\pi\)
0.862456 + 0.506131i \(0.168925\pi\)
\(954\) 0 0
\(955\) 24.0000 12.0000i 0.776622 0.388311i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 48.0000 1.55000
\(960\) 0 0
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −4.00000 8.00000i −0.128765 0.257529i
\(966\) 0 0
\(967\) 60.0000i 1.92947i −0.263223 0.964735i \(-0.584786\pi\)
0.263223 0.964735i \(-0.415214\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −60.0000 −1.92549 −0.962746 0.270408i \(-0.912841\pi\)
−0.962746 + 0.270408i \(0.912841\pi\)
\(972\) 0 0
\(973\) 48.0000i 1.53881i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 52.0000i 1.66363i 0.555055 + 0.831814i \(0.312697\pi\)
−0.555055 + 0.831814i \(0.687303\pi\)
\(978\) 0 0
\(979\) −28.0000 −0.894884
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 6.00000 + 12.0000i 0.191176 + 0.382352i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.0000i 1.01754i
\(990\) 0 0
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16.0000 8.00000i 0.507234 0.253617i
\(996\) 0 0
\(997\) 29.0000 29.0000i 0.918439 0.918439i −0.0784767 0.996916i \(-0.525006\pi\)
0.996916 + 0.0784767i \(0.0250056\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.bp.c.1513.1 yes 2
3.2 odd 2 2340.2.bp.a.1513.1 yes 2
5.2 odd 4 2340.2.u.b.577.1 yes 2
13.8 odd 4 2340.2.u.b.73.1 yes 2
15.2 even 4 2340.2.u.a.577.1 yes 2
39.8 even 4 2340.2.u.a.73.1 2
65.47 even 4 inner 2340.2.bp.c.1477.1 yes 2
195.47 odd 4 2340.2.bp.a.1477.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.u.a.73.1 2 39.8 even 4
2340.2.u.a.577.1 yes 2 15.2 even 4
2340.2.u.b.73.1 yes 2 13.8 odd 4
2340.2.u.b.577.1 yes 2 5.2 odd 4
2340.2.bp.a.1477.1 yes 2 195.47 odd 4
2340.2.bp.a.1513.1 yes 2 3.2 odd 2
2340.2.bp.c.1477.1 yes 2 65.47 even 4 inner
2340.2.bp.c.1513.1 yes 2 1.1 even 1 trivial