Properties

Label 2340.2.bp
Level $2340$
Weight $2$
Character orbit 2340.bp
Rep. character $\chi_{2340}(1477,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $70$
Newform subspaces $9$
Sturm bound $1008$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.bp (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 9 \)
Sturm bound: \(1008\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2340, [\chi])\).

Total New Old
Modular forms 1056 70 986
Cusp forms 960 70 890
Eisenstein series 96 0 96

Trace form

\( 70 q + 2 q^{5} - 8 q^{11} - 6 q^{13} - 2 q^{17} + 4 q^{19} - 20 q^{23} + 6 q^{25} - 12 q^{35} - 12 q^{37} - 14 q^{41} - 4 q^{43} - 8 q^{47} + 54 q^{49} - 18 q^{53} + 4 q^{55} - 16 q^{61} - 22 q^{65} + 4 q^{71}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2340, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2340.2.bp.a 2340.bp 65.f $2$ $18.685$ \(\Q(\sqrt{-1}) \) None 2340.2.u.a \(0\) \(0\) \(-4\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-2)q^{5}-4 q^{7}+(-2 i+2)q^{11}+\cdots\)
2340.2.bp.b 2340.bp 65.f $2$ $18.685$ \(\Q(\sqrt{-1}) \) None 260.2.m.a \(0\) \(0\) \(-4\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-2)q^{5}+4 q^{7}+(-4 i+4)q^{11}+\cdots\)
2340.2.bp.c 2340.bp 65.f $2$ $18.685$ \(\Q(\sqrt{-1}) \) None 2340.2.u.a \(0\) \(0\) \(4\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i+2)q^{5}-4 q^{7}+(2 i-2)q^{11}+\cdots\)
2340.2.bp.d 2340.bp 65.f $4$ $18.685$ \(\Q(\zeta_{8})\) None 2340.2.u.e \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q+(2\zeta_{8}+\zeta_{8}^{3})q^{5}-3q^{7}-\zeta_{8}q^{11}+\cdots\)
2340.2.bp.e 2340.bp 65.f $4$ $18.685$ \(\Q(i, \sqrt{5})\) None 260.2.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{1}+\beta _{3})q^{5}+(1-\beta _{2}+\beta _{3})q^{11}+\cdots\)
2340.2.bp.f 2340.bp 65.f $4$ $18.685$ \(\Q(\zeta_{8})\) None 2340.2.u.d \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2\zeta_{8}-\zeta_{8}^{3})q^{5}+3q^{7}+\zeta_{8}q^{11}+\cdots\)
2340.2.bp.g 2340.bp 65.f $8$ $18.685$ 8.0.\(\cdots\).2 None 260.2.m.c \(0\) \(0\) \(2\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta _{3}+\beta _{7})q^{5}+(-1-\beta _{2})q^{7}+(-2+\cdots)q^{11}+\cdots\)
2340.2.bp.h 2340.bp 65.f $16$ $18.685$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 2340.2.u.h \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{11}q^{5}+(1+\beta _{4})q^{7}+(-\beta _{7}+\beta _{8}+\cdots)q^{11}+\cdots\)
2340.2.bp.i 2340.bp 65.f $28$ $18.685$ None 780.2.r.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(2340, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2340, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(585, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(780, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1170, [\chi])\)\(^{\oplus 2}\)