L(s) = 1 | + 2·2-s + 3·4-s − 2·5-s + 4·7-s + 4·8-s − 4·10-s + 2·13-s + 8·14-s + 5·16-s + 17-s + 5·19-s − 6·20-s + 2·23-s − 2·25-s + 4·26-s + 12·28-s + 4·31-s + 6·32-s + 2·34-s − 8·35-s + 6·37-s + 10·38-s − 8·40-s + 9·41-s − 3·43-s + 4·46-s + 4·47-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 3/2·4-s − 0.894·5-s + 1.51·7-s + 1.41·8-s − 1.26·10-s + 0.554·13-s + 2.13·14-s + 5/4·16-s + 0.242·17-s + 1.14·19-s − 1.34·20-s + 0.417·23-s − 2/5·25-s + 0.784·26-s + 2.26·28-s + 0.718·31-s + 1.06·32-s + 0.342·34-s − 1.35·35-s + 0.986·37-s + 1.62·38-s − 1.26·40-s + 1.40·41-s − 0.457·43-s + 0.589·46-s + 0.583·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(8.463280749\) |
\(L(\frac12)\) |
\(\approx\) |
\(8.463280749\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.037735255667995203201388236497, −8.869494181048331324556504621787, −8.190529888951037692011295760577, −8.039672198377512682103634579694, −7.53537913486923803595366408431, −7.50695737289222644858790861630, −6.88418751275801213484324672289, −6.49798999140538658481477969393, −5.84078569602366248045978915245, −5.72011169734652380728607285202, −5.11327606168201901615325305948, −4.89070470802441293896587460836, −4.24702578211883245021715298179, −4.22837792274623027778098214083, −3.45515698969463155512577447060, −3.34200650166558958121524680272, −2.44196075027351253177324030048, −2.22123095222546016500475416985, −1.26633319469863157650380625531, −0.927447940921103229909302939442,
0.927447940921103229909302939442, 1.26633319469863157650380625531, 2.22123095222546016500475416985, 2.44196075027351253177324030048, 3.34200650166558958121524680272, 3.45515698969463155512577447060, 4.22837792274623027778098214083, 4.24702578211883245021715298179, 4.89070470802441293896587460836, 5.11327606168201901615325305948, 5.72011169734652380728607285202, 5.84078569602366248045978915245, 6.49798999140538658481477969393, 6.88418751275801213484324672289, 7.50695737289222644858790861630, 7.53537913486923803595366408431, 8.039672198377512682103634579694, 8.190529888951037692011295760577, 8.869494181048331324556504621787, 9.037735255667995203201388236497