Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 3 x - 13 x^{2} + 129 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.273564909267$, $\pm0.843545047325$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.94525.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1969$ | $3357145$ | $6363766651$ | $11705172828525$ | $21610157583347344$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $47$ | $1815$ | $80039$ | $3423763$ | $146999432$ | $6321450795$ | $271816608929$ | $11688199414483$ | $502592593841957$ | $21611482452388950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=3 x^6+8 x^5+13 x^4+27 x^3+10 x^2+9 x+30$
- $y^2=10 x^6+7 x^5+36 x^4+6 x^3+x^2+28 x+11$
- $y^2=19 x^6+20 x^5+12 x^4+33 x^2+36 x+9$
- $y^2=24 x^6+41 x^5+33 x^4+22 x^3+10 x^2+2 x+9$
- $y^2=22 x^6+12 x^5+11 x^4+31 x^3+15 x^2+33 x+3$
- $y^2=36 x^6+x^5+40 x^4+33 x^3+32 x^2+17 x+12$
- $y^2=25 x^6+35 x^5+26 x^4+25 x^3+22 x^2+38 x+34$
- $y^2=15 x^6+42 x^4+10 x^3+16 x^2+28 x+15$
- $y^2=37 x^6+12 x^5+11 x^4+39 x^3+6 x^2+12 x+41$
- $y^2=41 x^6+12 x^4+25 x^3+16 x^2+11 x+20$
- $y^2=23 x^6+15 x^5+17 x^4+19 x^3+36 x^2+34 x+26$
- $y^2=13 x^6+25 x^5+38 x^4+32 x^3+30 x^2+35 x+12$
- $y^2=40 x^6+32 x^5+37 x^4+37 x^3+28 x^2+11 x+12$
- $y^2=27 x^6+18 x^5+8 x^4+20 x^3+15 x^2+10 x+23$
- $y^2=27 x^6+25 x^5+9 x^4+x^3+12 x^2+8 x+14$
- $y^2=16 x^6+42 x^5+16 x^4+11 x^3+17 x^2+14 x+13$
- $y^2=19 x^6+22 x^5+14 x^4+13 x^3+22 x^2+11 x+33$
- $y^2=35 x^6+9 x^5+25 x^4+30 x^3+10 x^2+22 x+23$
- $y^2=30 x^6+16 x^5+39 x^4+39 x^3+21 x^2+3 x+34$
- $y^2=11 x^6+31 x^5+2 x^4+31 x^3+2 x^2+19 x+42$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.94525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.ad_an | $2$ | (not in LMFDB) |