Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 11 x + 133 x^{2} - 737 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.263089365804$, $\pm0.501753261616$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.971525.1 |
Galois group: | $D_{4}$ |
Jacobians: | $114$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3875$ | $20812625$ | $90713715125$ | $406065240378125$ | $1822894896023550000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $57$ | $4635$ | $301611$ | $20151003$ | $1350167392$ | $90458836455$ | $6060707088801$ | $406067599152483$ | $27206534279541927$ | $1822837808327268550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 114 curves (of which all are hyperelliptic):
- $y^2=2 x^6+6 x^5+55 x^4+53 x^3+54 x^2+22 x+25$
- $y^2=38 x^6+33 x^5+17 x^4+15 x^3+15 x^2+10 x+19$
- $y^2=66 x^6+55 x^5+51 x^4+64 x^3+3 x^2+63 x+37$
- $y^2=2 x^6+7 x^5+60 x^4+60 x^3+12 x^2+17 x+18$
- $y^2=66 x^6+61 x^5+8 x^4+50 x^3+31 x^2+57 x+37$
- $y^2=62 x^6+14 x^5+46 x^4+53 x^3+27 x^2+48 x+32$
- $y^2=8 x^6+37 x^4+48 x^3+26 x^2+55 x+22$
- $y^2=55 x^6+52 x^5+35 x^4+3 x^3+54 x^2+14 x+46$
- $y^2=51 x^6+37 x^5+2 x^4+4 x^3+51 x^2+x+8$
- $y^2=22 x^6+14 x^5+40 x^4+11 x^3+34 x^2+62 x+59$
- $y^2=16 x^6+39 x^5+54 x^4+27 x^3+22 x^2+45 x+22$
- $y^2=59 x^6+38 x^5+36 x^4+27 x^3+7 x^2+12 x+27$
- $y^2=30 x^6+15 x^5+15 x^4+47 x^3+50 x^2+22 x+63$
- $y^2=4 x^6+26 x^5+60 x^4+36 x^3+44 x^2+39 x+39$
- $y^2=64 x^6+5 x^5+34 x^4+16 x^3+66 x^2+64 x+28$
- $y^2=31 x^6+17 x^5+34 x^4+23 x^3+35 x^2+42 x+34$
- $y^2=50 x^6+20 x^5+47 x^4+37 x^3+56 x^2+53 x+11$
- $y^2=11 x^6+48 x^5+61 x^4+36 x^3+46 x^2+19 x+27$
- $y^2=40 x^6+39 x^5+21 x^4+37 x^3+22 x^2+58 x+46$
- $y^2=8 x^6+47 x^5+x^4+43 x^3+48 x^2+9 x+35$
- and 94 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.971525.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.l_fd | $2$ | (not in LMFDB) |