Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 23 x + 277 x^{2} + 1679 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.707851015916$, $\pm0.764425206862$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.611525.2 |
Galois group: | $D_{4}$ |
Jacobians: | $20$ |
Isomorphism classes: | 20 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7309$ | $28541645$ | $150593239981$ | $807019150913525$ | $4297442550308814544$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $97$ | $5355$ | $387109$ | $28417923$ | $2072983182$ | $151333880115$ | $11047408099909$ | $806460010989603$ | $58871586967561657$ | $4297625831908927150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=46 x^6+31 x^5+62 x^4+70 x^3+72 x^2+41 x+62$
- $y^2=28 x^6+48 x^5+10 x^4+11 x^3+31 x^2+2 x+27$
- $y^2=64 x^6+16 x^5+45 x^4+65 x^3+49 x^2+41 x+4$
- $y^2=5 x^6+33 x^5+45 x^4+64 x^3+11 x^2+43 x+24$
- $y^2=23 x^6+61 x^5+31 x^4+51 x^3+38 x^2+49 x+19$
- $y^2=41 x^6+60 x^5+27 x^4+24 x^3+66 x^2+63 x+17$
- $y^2=6 x^6+56 x^5+65 x^4+58 x^3+10 x^2+55 x+50$
- $y^2=50 x^6+14 x^5+10 x^4+22 x^3+16 x^2+34 x+67$
- $y^2=52 x^6+27 x^5+55 x^4+31 x^3+14 x^2+68 x+55$
- $y^2=8 x^6+43 x^5+13 x^4+64 x^3+11 x^2+45 x$
- $y^2=67 x^6+22 x^5+39 x^4+18 x^3+27 x^2+66 x+21$
- $y^2=61 x^6+52 x^5+4 x^4+67 x^3+54 x^2+58 x+26$
- $y^2=38 x^6+38 x^5+5 x^4+65 x^3+57 x^2+14 x+19$
- $y^2=16 x^6+52 x^5+8 x^4+13 x^3+12 x^2+34 x+55$
- $y^2=2 x^6+4 x^5+44 x^4+29 x^3+64 x+67$
- $y^2=39 x^6+10 x^5+3 x^4+67 x^3+19 x^2+72 x+64$
- $y^2=67 x^6+42 x^5+56 x^4+4 x^3+60 x^2+38 x+55$
- $y^2=x^6+12 x^5+41 x^4+56 x^3+4 x^2+63 x+4$
- $y^2=33 x^6+32 x^5+44 x^4+43 x^3+65 x^2+30 x+72$
- $y^2=4 x^6+30 x^5+8 x^4+2 x^3+62 x^2+9 x+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.611525.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.ax_kr | $2$ | (not in LMFDB) |