L(s) = 1 | + 2-s − 2·3-s − 2·4-s − 2·6-s + 6·7-s − 3·8-s + 3·9-s − 2·11-s + 4·12-s + 8·13-s + 6·14-s + 16-s + 2·17-s + 3·18-s + 2·19-s − 12·21-s − 2·22-s + 6·24-s + 8·26-s − 4·27-s − 12·28-s + 2·29-s − 16·31-s + 2·32-s + 4·33-s + 2·34-s − 6·36-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.15·3-s − 4-s − 0.816·6-s + 2.26·7-s − 1.06·8-s + 9-s − 0.603·11-s + 1.15·12-s + 2.21·13-s + 1.60·14-s + 1/4·16-s + 0.485·17-s + 0.707·18-s + 0.458·19-s − 2.61·21-s − 0.426·22-s + 1.22·24-s + 1.56·26-s − 0.769·27-s − 2.26·28-s + 0.371·29-s − 2.87·31-s + 0.353·32-s + 0.696·33-s + 0.342·34-s − 36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4730625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4730625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.954022616\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.954022616\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.026588169030694477499478980362, −9.005325148257090495466392331342, −8.290919692330478242497736919455, −8.088967505748253575289917696980, −7.934929449936648190701692076849, −7.32782091847140597912658731035, −6.84716087171808657233360422866, −6.38509201301356461873748604601, −5.73880067927267955901603094071, −5.53654177963471210352652827878, −5.25740079421440975719107165275, −5.09331683070262819187790497779, −4.37976812030464659588093840041, −4.15294009994955531876244781101, −3.76289720310333795649125104752, −3.37004892093017059497600659877, −2.29670366348512898094645852693, −1.82020158348520046433299669044, −1.04825082876271284007165115233, −0.75887526150236127825243908358,
0.75887526150236127825243908358, 1.04825082876271284007165115233, 1.82020158348520046433299669044, 2.29670366348512898094645852693, 3.37004892093017059497600659877, 3.76289720310333795649125104752, 4.15294009994955531876244781101, 4.37976812030464659588093840041, 5.09331683070262819187790497779, 5.25740079421440975719107165275, 5.53654177963471210352652827878, 5.73880067927267955901603094071, 6.38509201301356461873748604601, 6.84716087171808657233360422866, 7.32782091847140597912658731035, 7.934929449936648190701692076849, 8.088967505748253575289917696980, 8.290919692330478242497736919455, 9.005325148257090495466392331342, 9.026588169030694477499478980362