Invariants
Base field: | $\F_{11}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 2 x + 3 x^{2} + 22 x^{3} + 121 x^{4}$ |
Frobenius angles: | $\pm0.324646856481$, $\pm0.808799908310$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.11225.1 |
Galois group: | $D_{4}$ |
Jacobians: | $12$ |
Isomorphism classes: | 12 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $149$ | $15049$ | $1847600$ | $219128489$ | $25761152509$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $14$ | $124$ | $1388$ | $14964$ | $159954$ | $1771318$ | $19477094$ | $214364964$ | $2358103988$ | $25937345004$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=7 x^6+6 x^5+6 x^4+3 x^3+2 x+7$
- $y^2=5 x^6+2 x^5+2 x^4+3 x^3+10 x^2+8 x+4$
- $y^2=7 x^6+8 x^5+2 x^4+5 x^3+2 x^2+4 x+4$
- $y^2=9 x^6+6 x^5+4 x^4+6 x^3+5 x+9$
- $y^2=4 x^6+5 x^5+6 x^3+6 x^2+4 x+4$
- $y^2=4 x^6+4 x^5+x^4+7 x^3+2 x^2+7$
- $y^2=10 x^6+4 x^5+10 x^4+3 x^3+5 x^2+9 x+9$
- $y^2=4 x^6+10 x^5+3 x^4+9 x^2+9 x+2$
- $y^2=3 x^6+6 x^4+3 x^3+2 x^2+2$
- $y^2=7 x^6+6 x^5+10 x^4+3 x^2+4 x+8$
- $y^2=x^6+9 x^5+10 x^4+x^2+5 x+6$
- $y^2=5 x^6+8 x^5+8 x^4+6 x^3+4 x^2+9 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11}$.
Endomorphism algebra over $\F_{11}$The endomorphism algebra of this simple isogeny class is 4.0.11225.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.11.ac_d | $2$ | 2.121.c_gh |