Properties

Label 2-2142-1.1-c1-0-13
Degree $2$
Conductor $2142$
Sign $1$
Analytic cond. $17.1039$
Root an. cond. $4.13569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s − 7-s + 8-s − 2·10-s + 6·11-s − 14-s + 16-s + 17-s − 2·19-s − 2·20-s + 6·22-s − 25-s − 28-s + 4·29-s + 32-s + 34-s + 2·35-s + 8·37-s − 2·38-s − 2·40-s − 2·41-s − 4·43-s + 6·44-s + 8·47-s + 49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.377·7-s + 0.353·8-s − 0.632·10-s + 1.80·11-s − 0.267·14-s + 1/4·16-s + 0.242·17-s − 0.458·19-s − 0.447·20-s + 1.27·22-s − 1/5·25-s − 0.188·28-s + 0.742·29-s + 0.176·32-s + 0.171·34-s + 0.338·35-s + 1.31·37-s − 0.324·38-s − 0.316·40-s − 0.312·41-s − 0.609·43-s + 0.904·44-s + 1.16·47-s + 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2142 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2142\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(17.1039\)
Root analytic conductor: \(4.13569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2142,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.517867168\)
\(L(\frac12)\) \(\approx\) \(2.517867168\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.050668208539988291528513300065, −8.241482900063155290280130992338, −7.38307216470903280183365304509, −6.61198640915252007394786259785, −6.07577312270787812557481081937, −4.91252524862077574990292793780, −3.94475495379555862756542826222, −3.68234594137598270185007075450, −2.39321496263075636114052800531, −0.977095425235087442309045097961, 0.977095425235087442309045097961, 2.39321496263075636114052800531, 3.68234594137598270185007075450, 3.94475495379555862756542826222, 4.91252524862077574990292793780, 6.07577312270787812557481081937, 6.61198640915252007394786259785, 7.38307216470903280183365304509, 8.241482900063155290280130992338, 9.050668208539988291528513300065

Graph of the $Z$-function along the critical line