Properties

Label 2-2040-1.1-c1-0-30
Degree $2$
Conductor $2040$
Sign $-1$
Analytic cond. $16.2894$
Root an. cond. $4.03602$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 3·7-s + 9-s − 11-s − 6·13-s + 15-s + 17-s − 19-s − 3·21-s + 6·23-s + 25-s + 27-s − 5·29-s − 2·31-s − 33-s − 3·35-s − 11·37-s − 6·39-s − 9·41-s + 45-s + 5·47-s + 2·49-s + 51-s − 3·53-s − 55-s − 57-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.13·7-s + 1/3·9-s − 0.301·11-s − 1.66·13-s + 0.258·15-s + 0.242·17-s − 0.229·19-s − 0.654·21-s + 1.25·23-s + 1/5·25-s + 0.192·27-s − 0.928·29-s − 0.359·31-s − 0.174·33-s − 0.507·35-s − 1.80·37-s − 0.960·39-s − 1.40·41-s + 0.149·45-s + 0.729·47-s + 2/7·49-s + 0.140·51-s − 0.412·53-s − 0.134·55-s − 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2040\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(16.2894\)
Root analytic conductor: \(4.03602\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2040,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
17 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 5 T + p T^{2} \) 1.47.af
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.115995186356517566132049383843, −7.88838720410263343605234437105, −7.15203562927167970765525330914, −6.58191745816098313511312960641, −5.45751654674526263968548276270, −4.77678464018513992595769282811, −3.47953954157197698189421883851, −2.84769201911839488867343006498, −1.84045839091382893383997095118, 0, 1.84045839091382893383997095118, 2.84769201911839488867343006498, 3.47953954157197698189421883851, 4.77678464018513992595769282811, 5.45751654674526263968548276270, 6.58191745816098313511312960641, 7.15203562927167970765525330914, 7.88838720410263343605234437105, 9.115995186356517566132049383843

Graph of the $Z$-function along the critical line