Properties

Label 2-198-1.1-c1-0-1
Degree $2$
Conductor $198$
Sign $1$
Analytic cond. $1.58103$
Root an. cond. $1.25739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 4·5-s − 2·7-s − 8-s − 4·10-s − 11-s + 4·13-s + 2·14-s + 16-s + 2·17-s + 4·20-s + 22-s + 6·23-s + 11·25-s − 4·26-s − 2·28-s − 10·29-s − 8·31-s − 32-s − 2·34-s − 8·35-s − 2·37-s − 4·40-s − 2·41-s + 4·43-s − 44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.78·5-s − 0.755·7-s − 0.353·8-s − 1.26·10-s − 0.301·11-s + 1.10·13-s + 0.534·14-s + 1/4·16-s + 0.485·17-s + 0.894·20-s + 0.213·22-s + 1.25·23-s + 11/5·25-s − 0.784·26-s − 0.377·28-s − 1.85·29-s − 1.43·31-s − 0.176·32-s − 0.342·34-s − 1.35·35-s − 0.328·37-s − 0.632·40-s − 0.312·41-s + 0.609·43-s − 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198\)    =    \(2 \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(1.58103\)
Root analytic conductor: \(1.25739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 198,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.085741366\)
\(L(\frac12)\) \(\approx\) \(1.085741366\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78754919426025536298321895292, −11.10629631807433205694642872180, −10.38013514973553904358785803492, −9.396010671988393299929043424642, −8.935424921700037406617751999461, −7.31626404793277731789533693062, −6.20004880727144301320499647411, −5.48462700120923997068508135767, −3.18510621994423060681354856306, −1.66815280525216283373919758824, 1.66815280525216283373919758824, 3.18510621994423060681354856306, 5.48462700120923997068508135767, 6.20004880727144301320499647411, 7.31626404793277731789533693062, 8.935424921700037406617751999461, 9.396010671988393299929043424642, 10.38013514973553904358785803492, 11.10629631807433205694642872180, 12.78754919426025536298321895292

Graph of the $Z$-function along the critical line