| L(s) = 1 | + 2·2-s + 2·3-s + 3·4-s + 4·6-s + 4·8-s + 3·9-s + 2·11-s + 6·12-s + 4·13-s + 5·16-s + 2·17-s + 6·18-s − 10·19-s + 4·22-s + 4·23-s + 8·24-s + 8·26-s + 10·27-s + 8·29-s + 4·31-s + 6·32-s + 4·33-s + 4·34-s + 9·36-s − 2·37-s − 20·38-s + 8·39-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s + 1.63·6-s + 1.41·8-s + 9-s + 0.603·11-s + 1.73·12-s + 1.10·13-s + 5/4·16-s + 0.485·17-s + 1.41·18-s − 2.29·19-s + 0.852·22-s + 0.834·23-s + 1.63·24-s + 1.56·26-s + 1.92·27-s + 1.48·29-s + 0.718·31-s + 1.06·32-s + 0.696·33-s + 0.685·34-s + 3/2·36-s − 0.328·37-s − 3.24·38-s + 1.28·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(12.23129348\) |
| \(L(\frac12)\) |
\(\approx\) |
\(12.23129348\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.185075631281304424842418069504, −8.942923879399788595071668107048, −8.561939574147500571790315438538, −8.396879899200597943631683923191, −7.80974681604262524886903360551, −7.53204207622829071181453656909, −6.75553309758946923431375030008, −6.56364957581995654575158709468, −6.38428722623152595777496316589, −6.00293497616628195120104017780, −5.13932141230260486730540470487, −4.82604220680341334907637978048, −4.50299375581603978348995533716, −3.99537293944878661435748904089, −3.54110406293956700135370985156, −3.25827034717114569518100019075, −2.65893092684107510662709321005, −2.26511061878540504975212372415, −1.56276024939701118332757226885, −1.03133138935126130223078502192,
1.03133138935126130223078502192, 1.56276024939701118332757226885, 2.26511061878540504975212372415, 2.65893092684107510662709321005, 3.25827034717114569518100019075, 3.54110406293956700135370985156, 3.99537293944878661435748904089, 4.50299375581603978348995533716, 4.82604220680341334907637978048, 5.13932141230260486730540470487, 6.00293497616628195120104017780, 6.38428722623152595777496316589, 6.56364957581995654575158709468, 6.75553309758946923431375030008, 7.53204207622829071181453656909, 7.80974681604262524886903360551, 8.396879899200597943631683923191, 8.561939574147500571790315438538, 8.942923879399788595071668107048, 9.185075631281304424842418069504