Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 2 x + 59 x^{2} )^{2}$ |
| $1 + 4 x + 122 x^{2} + 236 x^{3} + 3481 x^{4}$ | |
| Frobenius angles: | $\pm0.541558382732$, $\pm0.541558382732$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $20$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3844$ | $12931216$ | $42038941156$ | $146684265923584$ | $511163200127795524$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $64$ | $3710$ | $204688$ | $12105294$ | $714989264$ | $42181115726$ | $2488646487776$ | $146830413255454$ | $8662996162178272$ | $511116754050177950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=5 x^5+9 x^4+22 x^2+18 x+53$
- $y^2=2 x^6+41 x^5+50 x^4+54 x^3+42 x^2+21 x+27$
- $y^2=38 x^6+14 x^5+42 x^4+12 x^3+9 x^2+44 x+39$
- $y^2=22 x^6+35 x^5+27 x^4+39 x^3+27 x^2+35 x+22$
- $y^2=54 x^6+38 x^5+8 x^4+51 x^3+48 x^2+57 x+26$
- $y^2=38 x^6+37 x^5+21 x^4+25 x^3+38 x^2+6 x+4$
- $y^2=28 x^6+25 x^5+13 x^4+13 x^3+8 x^2+37 x+48$
- $y^2=56 x^6+43 x^5+45 x^4+27 x^3+15 x^2+31 x+13$
- $y^2=25 x^6+53 x^5+52 x^4+10 x^3+43 x^2+35 x+10$
- $y^2=4 x^6+19 x^4+40 x^3+16 x^2+23 x+54$
- $y^2=8 x^5+24 x^4+54 x^3+20 x^2+28 x+40$
- $y^2=53 x^6+27 x^5+44 x^3+34 x^2+57 x+1$
- $y^2=40 x^6+13 x^5+38 x^4+45 x^3+45 x^2+18 x+2$
- $y^2=58 x^6+55 x^5+41 x^4+23 x^3+23 x^2+54 x+11$
- $y^2=18 x^6+7 x^5+55 x^4+4 x^3+51 x^2+49 x+9$
- $y^2=5 x^6+50 x^4+50 x^2+5$
- $y^2=37 x^6+22 x^5+51 x^4+40 x^3+37 x^2+29 x+12$
- $y^2=53 x^6+41 x^5+49 x^4+3 x^3+5 x^2+25 x+12$
- $y^2=51 x^6+34 x^5+45 x^4+34 x^3+35 x^2+51 x+20$
- $y^2=42 x^6+48 x^5+15 x^4+29 x^3+37 x^2+58 x+9$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The isogeny class factors as 1.59.c 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-58}) \)$)$ |
Base change
This is a primitive isogeny class.