Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 14 x + 173 x^{2} - 1246 x^{3} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.224969913283$, $\pm0.505879146124$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1230912.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $168$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6835$ | $63941425$ | $497535315820$ | $3936542640375625$ | $31182568083491311675$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $8072$ | $705754$ | $62741508$ | $5584211336$ | $496983333062$ | $44231330084024$ | $3936588580121668$ | $350356402723117546$ | $31181719933039837352$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=24 x^6+86 x^5+52 x^4+69 x^3+84 x^2+62 x+53$
- $y^2=21 x^6+83 x^5+41 x^4+19 x^3+14 x^2+26 x+8$
- $y^2=70 x^6+52 x^5+25 x^4+15 x^3+44 x^2+86 x+75$
- $y^2=62 x^6+77 x^5+8 x^4+87 x^3+45 x^2+33 x+68$
- $y^2=47 x^6+71 x^5+10 x^4+35 x^3+46 x^2+65 x+76$
- $y^2=29 x^6+8 x^5+17 x^4+34 x^3+53 x^2+10 x+29$
- $y^2=53 x^6+6 x^5+3 x^4+5 x^3+47 x^2+13 x+43$
- $y^2=43 x^6+77 x^5+61 x^4+62 x^3+45 x^2+6 x+65$
- $y^2=61 x^6+67 x^5+18 x^4+79 x^3+45 x^2+86 x+52$
- $y^2=49 x^6+45 x^5+51 x^4+62 x^3+39 x^2+32 x+54$
- $y^2=23 x^6+24 x^5+38 x^4+80 x^3+4 x^2+79 x+39$
- $y^2=84 x^6+77 x^5+81 x^3+41 x^2+34 x+65$
- $y^2=4 x^6+79 x^5+42 x^4+82 x^3+59 x^2+39 x+66$
- $y^2=6 x^6+57 x^5+2 x^4+31 x^3+68 x^2+87 x+29$
- $y^2=49 x^6+62 x^4+16 x^3+52 x^2+65 x+52$
- $y^2=14 x^6+6 x^5+84 x^4+87 x^3+81 x^2+68 x+41$
- $y^2=14 x^6+27 x^5+38 x^4+53 x^3+18 x^2+42 x+38$
- $y^2=12 x^6+35 x^5+x^4+76 x^3+21 x^2+78 x+68$
- $y^2=6 x^6+5 x^5+38 x^4+32 x^3+19 x^2+51 x+33$
- $y^2=42 x^6+39 x^5+21 x^4+70 x^3+20 x^2+11 x+25$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is 4.0.1230912.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.o_gr | $2$ | (not in LMFDB) |