L(s) = 1 | − 2·2-s + 2·3-s + 3·4-s + 2·5-s − 4·6-s − 2·7-s − 4·8-s − 4·10-s + 6·12-s + 4·14-s + 4·15-s + 5·16-s + 6·17-s + 4·19-s + 6·20-s − 4·21-s − 8·24-s + 3·25-s − 2·27-s − 6·28-s + 12·29-s − 8·30-s + 10·31-s − 6·32-s − 12·34-s − 4·35-s − 8·37-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 1.15·3-s + 3/2·4-s + 0.894·5-s − 1.63·6-s − 0.755·7-s − 1.41·8-s − 1.26·10-s + 1.73·12-s + 1.06·14-s + 1.03·15-s + 5/4·16-s + 1.45·17-s + 0.917·19-s + 1.34·20-s − 0.872·21-s − 1.63·24-s + 3/5·25-s − 0.384·27-s − 1.13·28-s + 2.22·29-s − 1.46·30-s + 1.79·31-s − 1.06·32-s − 2.05·34-s − 0.676·35-s − 1.31·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856100 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2856100 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.465149940\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.465149940\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.589239195906294047567217020776, −9.261413895551029949290330779197, −8.610057147488264148816380916667, −8.455699527783633237975256262287, −8.046453929914817214974844208946, −7.995267809897415304840265387924, −7.07927035522650330657652585427, −6.95596430629141929750123182739, −6.47905470177036460954364467784, −6.17607752752829745208326939956, −5.43614878127168211271144919930, −5.33442112178138922812138215387, −4.62304220427540059167546617309, −3.74858312957131062066192165814, −3.21213249062760426348717493072, −3.05796207421701663304036738759, −2.45148839577455265609093602291, −2.14016745913155624963032018499, −1.11247019135955241962420012521, −0.843142401467970765558933618765,
0.843142401467970765558933618765, 1.11247019135955241962420012521, 2.14016745913155624963032018499, 2.45148839577455265609093602291, 3.05796207421701663304036738759, 3.21213249062760426348717493072, 3.74858312957131062066192165814, 4.62304220427540059167546617309, 5.33442112178138922812138215387, 5.43614878127168211271144919930, 6.17607752752829745208326939956, 6.47905470177036460954364467784, 6.95596430629141929750123182739, 7.07927035522650330657652585427, 7.995267809897415304840265387924, 8.046453929914817214974844208946, 8.455699527783633237975256262287, 8.610057147488264148816380916667, 9.261413895551029949290330779197, 9.589239195906294047567217020776