Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 42 x^{2} - 172 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.261645702182$, $\pm0.622622408574$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.490752.3 |
Galois group: | $D_{4}$ |
Jacobians: | $180$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1716$ | $3548688$ | $6315252372$ | $11700336620544$ | $21616845199711476$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $1918$ | $79432$ | $3422350$ | $147044920$ | $6321221134$ | $271817262232$ | $11688200556190$ | $502592577850312$ | $21611482195633438$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=23 x^6+40 x^5+2 x^4+6 x^3+4 x^2+6 x+25$
- $y^2=37 x^6+4 x^5+26 x^4+4 x^3+22 x^2+34 x+35$
- $y^2=7 x^6+35 x^5+39 x^4+2 x^3+21 x^2+2 x+42$
- $y^2=32 x^6+7 x^5+27 x^4+11 x^3+13 x^2+17 x+38$
- $y^2=37 x^6+x^5+6 x^4+26 x^3+7 x^2+3 x+18$
- $y^2=11 x^6+36 x^5+22 x^4+18 x^3+39 x^2+30 x+34$
- $y^2=32 x^6+22 x^5+19 x^4+41 x^3+26 x^2+35 x+4$
- $y^2=5 x^6+25 x^5+41 x^4+31 x^3+18 x^2+33 x+7$
- $y^2=36 x^6+9 x^5+22 x^4+12 x^3+27 x^2+36 x+18$
- $y^2=42 x^6+30 x^5+29 x^4+36 x^3+22 x^2+16 x+27$
- $y^2=36 x^6+28 x^5+23 x^3+40 x^2+16 x+27$
- $y^2=25 x^6+22 x^5+2 x^4+15 x^3+30 x^2+29 x+18$
- $y^2=42 x^5+41 x^4+23 x^3+7 x^2+5 x+30$
- $y^2=35 x^6+38 x^5+15 x^4+39 x^3+20 x^2+27 x+3$
- $y^2=11 x^6+35 x^5+19 x^4+39 x^3+24 x^2+17 x+29$
- $y^2=19 x^6+3 x^4+25 x^3+36 x^2+26 x+30$
- $y^2=8 x^6+9 x^5+35 x^4+3 x^3+9 x^2+4 x+18$
- $y^2=18 x^6+36 x^5+2 x^4+24 x^3+21 x^2+41 x+34$
- $y^2=5 x^6+42 x^5+8 x^4+25 x^3+7 x^2+31 x+41$
- $y^2=17 x^6+36 x^5+x^4+32 x^3+6 x^2+14 x+10$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.490752.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.e_bq | $2$ | (not in LMFDB) |