Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 103 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.462044697231$, $\pm0.537955302769$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{3}, \sqrt{-209})\) |
Galois group: | $C_2^2$ |
Jacobians: | $38$ |
Isomorphism classes: | 40 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2913$ | $8485569$ | $22164585876$ | $62180968311081$ | $174887470674500793$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $3016$ | $148878$ | $7880500$ | $418195494$ | $22164810622$ | $1174711139838$ | $62259672153124$ | $3299763591802134$ | $174887470983488536$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 38 curves (of which all are hyperelliptic):
- $y^2=x^6+x^3+35$
- $y^2=32 x^6+39 x^5+18 x^4+3 x^3+52 x+49$
- $y^2=11 x^6+25 x^5+36 x^4+6 x^3+51 x+45$
- $y^2=14 x^6+11 x^5+3 x^4+15 x^3+19 x^2+16 x+43$
- $y^2=28 x^6+22 x^5+6 x^4+30 x^3+38 x^2+32 x+33$
- $y^2=9 x^6+16 x^5+19 x^4+23 x^3+32 x^2+37 x+10$
- $y^2=18 x^6+32 x^5+38 x^4+46 x^3+11 x^2+21 x+20$
- $y^2=34 x^6+32 x^5+18 x^4+40 x^3+45 x^2+13 x+36$
- $y^2=15 x^6+11 x^5+36 x^4+27 x^3+37 x^2+26 x+19$
- $y^2=41 x^6+33 x^5+3 x^4+36 x^3+36 x^2+52 x+42$
- $y^2=29 x^6+13 x^5+6 x^4+19 x^3+19 x^2+51 x+31$
- $y^2=47 x^6+13 x^5+45 x^4+33 x^3+29 x^2+42 x+34$
- $y^2=41 x^6+26 x^5+37 x^4+13 x^3+5 x^2+31 x+15$
- $y^2=49 x^6+47 x^5+38 x^4+43 x^3+33 x^2+10 x+3$
- $y^2=45 x^6+41 x^5+23 x^4+33 x^3+13 x^2+20 x+6$
- $y^2=29 x^6+14 x^5+10 x^4+15 x^3+6 x^2+48 x+50$
- $y^2=5 x^6+28 x^5+20 x^4+30 x^3+12 x^2+43 x+47$
- $y^2=19 x^6+11 x^5+48 x^4+15 x^3+4 x^2+22 x+15$
- $y^2=38 x^6+22 x^5+43 x^4+30 x^3+8 x^2+44 x+30$
- $y^2=43 x^6+13 x^5+5 x^4+x^3+6 x^2+35 x+13$
- and 18 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-209})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.dz 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-627}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.a_adz | $4$ | (not in LMFDB) |
2.53.ad_ce | $12$ | (not in LMFDB) |
2.53.d_ce | $12$ | (not in LMFDB) |