-
av_fq_isog • Show schema
Hide schema
{'abvar_count': 2913, 'abvar_counts': [2913, 8485569, 22164585876, 62180968311081, 174887470674500793, 491268867054578687376, 1379946262056912572169057, 3876267913366479368627111049, 10888439761782910226760386367924, 30585627398924374856478739757628849], 'abvar_counts_str': '2913 8485569 22164585876 62180968311081 174887470674500793 491268867054578687376 1379946262056912572169057 3876267913366479368627111049 10888439761782910226760386367924 30585627398924374856478739757628849 ', 'all_polarized_product': False, 'all_unpolarized_product': False, 'angle_corank': 1, 'angle_rank': 1, 'angles': [0.462044697230698, 0.537955302769302], 'center_dim': 4, 'cohen_macaulay_max': 1, 'curve_count': 54, 'curve_counts': [54, 3016, 148878, 7880500, 418195494, 22164810622, 1174711139838, 62259672153124, 3299763591802134, 174887470983488536], 'curve_counts_str': '54 3016 148878 7880500 418195494 22164810622 1174711139838 62259672153124 3299763591802134 174887470983488536 ', 'curves': ['y^2=x^6+x^3+35', 'y^2=32*x^6+39*x^5+18*x^4+3*x^3+52*x+49', 'y^2=11*x^6+25*x^5+36*x^4+6*x^3+51*x+45', 'y^2=14*x^6+11*x^5+3*x^4+15*x^3+19*x^2+16*x+43', 'y^2=28*x^6+22*x^5+6*x^4+30*x^3+38*x^2+32*x+33', 'y^2=9*x^6+16*x^5+19*x^4+23*x^3+32*x^2+37*x+10', 'y^2=18*x^6+32*x^5+38*x^4+46*x^3+11*x^2+21*x+20', 'y^2=34*x^6+32*x^5+18*x^4+40*x^3+45*x^2+13*x+36', 'y^2=15*x^6+11*x^5+36*x^4+27*x^3+37*x^2+26*x+19', 'y^2=41*x^6+33*x^5+3*x^4+36*x^3+36*x^2+52*x+42', 'y^2=29*x^6+13*x^5+6*x^4+19*x^3+19*x^2+51*x+31', 'y^2=47*x^6+13*x^5+45*x^4+33*x^3+29*x^2+42*x+34', 'y^2=41*x^6+26*x^5+37*x^4+13*x^3+5*x^2+31*x+15', 'y^2=49*x^6+47*x^5+38*x^4+43*x^3+33*x^2+10*x+3', 'y^2=45*x^6+41*x^5+23*x^4+33*x^3+13*x^2+20*x+6', 'y^2=29*x^6+14*x^5+10*x^4+15*x^3+6*x^2+48*x+50', 'y^2=5*x^6+28*x^5+20*x^4+30*x^3+12*x^2+43*x+47', 'y^2=19*x^6+11*x^5+48*x^4+15*x^3+4*x^2+22*x+15', 'y^2=38*x^6+22*x^5+43*x^4+30*x^3+8*x^2+44*x+30', 'y^2=43*x^6+13*x^5+5*x^4+x^3+6*x^2+35*x+13', 'y^2=33*x^6+26*x^5+10*x^4+2*x^3+12*x^2+17*x+26', 'y^2=29*x^6+30*x^5+5*x^4+21*x^3+19*x^2+x+36', 'y^2=5*x^6+7*x^5+10*x^4+42*x^3+38*x^2+2*x+19', 'y^2=48*x^6+28*x^5+22*x^3+21*x^2+6*x+43', 'y^2=43*x^6+3*x^5+44*x^3+42*x^2+12*x+33', 'y^2=39*x^6+14*x^5+5*x^4+39*x^3+36*x^2+49*x+19', 'y^2=25*x^6+28*x^5+10*x^4+25*x^3+19*x^2+45*x+38', 'y^2=52*x^6+5*x^5+28*x^4+5*x^3+4*x^2+31*x+37', 'y^2=51*x^6+10*x^5+3*x^4+10*x^3+8*x^2+9*x+21', 'y^2=52*x^6+40*x^5+27*x^4+23*x^3+41*x^2+46*x+41', 'y^2=51*x^6+27*x^5+x^4+46*x^3+29*x^2+39*x+29', 'y^2=42*x^6+16*x^5+47*x^4+39*x^3+48*x^2+9*x+41', 'y^2=31*x^6+32*x^5+41*x^4+25*x^3+43*x^2+18*x+29', 'y^2=x^6+x^3+19', 'y^2=44*x^6+45*x^5+41*x^4+2*x^3+45*x^2+28*x+52', 'y^2=35*x^6+37*x^5+29*x^4+4*x^3+37*x^2+3*x+51', 'y^2=40*x^6+29*x^5+13*x^4+39*x^3+48*x^2+35*x+9', 'y^2=27*x^6+5*x^5+26*x^4+25*x^3+43*x^2+17*x+18'], 'dim1_distinct': 0, 'dim1_factors': 0, 'dim2_distinct': 1, 'dim2_factors': 1, 'dim3_distinct': 0, 'dim3_factors': 0, 'dim4_distinct': 0, 'dim4_factors': 0, 'dim5_distinct': 0, 'dim5_factors': 0, 'endomorphism_ring_count': 1, 'g': 2, 'galois_groups': ['4T2'], 'geom_dim1_distinct': 1, 'geom_dim1_factors': 2, 'geom_dim2_distinct': 0, 'geom_dim2_factors': 0, 'geom_dim3_distinct': 0, 'geom_dim3_factors': 0, 'geom_dim4_distinct': 0, 'geom_dim4_factors': 0, 'geom_dim5_distinct': 0, 'geom_dim5_factors': 0, 'geometric_center_dim': 2, 'geometric_extension_degree': 2, 'geometric_galois_groups': ['2T1'], 'geometric_number_fields': ['2.0.627.1'], 'geometric_splitting_field': '2.0.627.1', 'geometric_splitting_polynomials': [[157, -1, 1]], 'group_structure_count': 1, 'has_geom_ss_factor': False, 'has_jacobian': 1, 'has_principal_polarization': 1, 'hyp_count': 38, 'is_geometrically_simple': False, 'is_geometrically_squarefree': False, 'is_primitive': True, 'is_simple': True, 'is_squarefree': True, 'is_supersingular': False, 'jacobian_count': 38, 'label': '2.53.a_dz', 'max_divalg_dim': 1, 'max_geom_divalg_dim': 1, 'max_twist_degree': 12, 'newton_coelevation': 2, 'newton_elevation': 0, 'number_fields': ['4.0.6290064.6'], 'p': 53, 'p_rank': 2, 'p_rank_deficit': 0, 'pic_prime_gens': [[1, 3, 1, 20], [1, 11, 1, 2]], 'poly': [1, 0, 103, 0, 2809], 'poly_str': '1 0 103 0 2809 ', 'primitive_models': [], 'principal_polarization_count': 40, 'q': 53, 'real_poly': [1, 0, -3], 'simple_distinct': ['2.53.a_dz'], 'simple_factors': ['2.53.a_dzA'], 'simple_multiplicities': [1], 'singular_primes': [], 'size': 40, 'slopes': ['0A', '0B', '1A', '1B'], 'splitting_field': '4.0.6290064.6', 'splitting_polynomials': [[2809, 0, 103, 0, 1]], 'twist_count': 4, 'twists': [['2.53.a_adz', '2.7890481.aoty_dlbdwd', 4], ['2.53.ad_ce', '2.491258904256726154641.aboaqibwe_pvkhlqlpchdqrog', 12], ['2.53.d_ce', '2.491258904256726154641.aboaqibwe_pvkhlqlpchdqrog', 12]], 'weak_equivalence_count': 1, 'zfv_index': 1, 'zfv_index_factorization': [], 'zfv_is_bass': True, 'zfv_is_maximal': True, 'zfv_pic_size': 40, 'zfv_plus_index': 1, 'zfv_plus_index_factorization': [], 'zfv_plus_norm': 43681, 'zfv_singular_count': 0, 'zfv_singular_primes': []}
-
av_fq_endalg_factors • Show schema
Hide schema
-
id: 43915
{'base_label': '2.53.a_dz', 'extension_degree': 1, 'extension_label': '2.53.a_dz', 'multiplicity': 1}
-
id: 43916
{'base_label': '2.53.a_dz', 'extension_degree': 2, 'extension_label': '1.2809.dz', 'multiplicity': 2}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '4.0.6290064.6', 'center_dim': 4, 'divalg_dim': 1, 'extension_label': '2.53.a_dz', 'galois_group': '4T2', 'places': [['0', '103/53', '0', '1/53'], ['0', '1', '0', '0']]}
-
av_fq_endalg_data • Show schema
Hide schema
{'brauer_invariants': ['0', '0'], 'center': '2.0.627.1', 'center_dim': 2, 'divalg_dim': 1, 'extension_label': '1.2809.dz', 'galois_group': '2T1', 'places': [['51', '1'], ['1', '1']]}