L(s) = 1 | + 2·3-s + 3·9-s + 4·11-s − 8·13-s + 2·17-s + 6·19-s − 8·23-s + 5·25-s + 10·27-s + 4·29-s + 4·31-s + 8·33-s − 10·37-s − 16·39-s − 20·41-s + 8·43-s − 4·47-s + 4·51-s + 2·53-s + 12·57-s − 10·59-s + 8·61-s + 8·67-s − 16·69-s + 6·73-s + 10·75-s + 16·79-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 9-s + 1.20·11-s − 2.21·13-s + 0.485·17-s + 1.37·19-s − 1.66·23-s + 25-s + 1.92·27-s + 0.742·29-s + 0.718·31-s + 1.39·33-s − 1.64·37-s − 2.56·39-s − 3.12·41-s + 1.21·43-s − 0.583·47-s + 0.560·51-s + 0.274·53-s + 1.58·57-s − 1.30·59-s + 1.02·61-s + 0.977·67-s − 1.92·69-s + 0.702·73-s + 1.15·75-s + 1.80·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2458624 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.618417482\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.618417482\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.764664668741302425296577013520, −9.131990479126547086206410105317, −8.935618744639606178158548065259, −8.288160011650115988026063046662, −8.226742755290609853996172103233, −7.66673133820314280638966525338, −7.24502425935227376474024920526, −6.84796716705882411980144600197, −6.65495064580876221518634699169, −6.13014693493831836706981825908, −5.16370727224857433240921688883, −5.10182222428006508201329252193, −4.74148336838648099636782402493, −3.95419917458395826946989809104, −3.69065127170005976181181153096, −2.93991732126155711150269897491, −2.86626175830223330806690385101, −2.01399891433192791332222017452, −1.59508245037601386228854357373, −0.69972999514909345743633137145,
0.69972999514909345743633137145, 1.59508245037601386228854357373, 2.01399891433192791332222017452, 2.86626175830223330806690385101, 2.93991732126155711150269897491, 3.69065127170005976181181153096, 3.95419917458395826946989809104, 4.74148336838648099636782402493, 5.10182222428006508201329252193, 5.16370727224857433240921688883, 6.13014693493831836706981825908, 6.65495064580876221518634699169, 6.84796716705882411980144600197, 7.24502425935227376474024920526, 7.66673133820314280638966525338, 8.226742755290609853996172103233, 8.288160011650115988026063046662, 8.935618744639606178158548065259, 9.131990479126547086206410105317, 9.764664668741302425296577013520