L(s) = 1 | − 4·5-s + 2·7-s − 2·11-s − 2·17-s − 4·19-s − 2·23-s + 2·25-s − 4·29-s − 2·31-s − 8·35-s − 4·37-s − 4·41-s − 12·43-s − 8·47-s − 6·49-s + 4·53-s + 8·55-s − 20·59-s − 4·61-s − 24·67-s − 14·71-s + 12·73-s − 4·77-s + 10·79-s − 12·83-s + 8·85-s + 24·89-s + ⋯ |
L(s) = 1 | − 1.78·5-s + 0.755·7-s − 0.603·11-s − 0.485·17-s − 0.917·19-s − 0.417·23-s + 2/5·25-s − 0.742·29-s − 0.359·31-s − 1.35·35-s − 0.657·37-s − 0.624·41-s − 1.82·43-s − 1.16·47-s − 6/7·49-s + 0.549·53-s + 1.07·55-s − 2.60·59-s − 0.512·61-s − 2.93·67-s − 1.66·71-s + 1.40·73-s − 0.455·77-s + 1.12·79-s − 1.31·83-s + 0.867·85-s + 2.54·89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1498176 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1498176 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.298828244529765316303193846723, −9.131772038426623968387761404142, −8.523708651450445713268596067504, −8.216077719992776177045841195155, −7.79289989260832537813691163972, −7.73944197492634853259667144352, −7.20563738270572016034536531760, −6.67938150915946395242158480830, −6.22207169980315580295092588391, −5.76737397285629147308665589277, −4.90779661389959046205516543029, −4.90708072138503181669603657872, −4.27479141814712282387756575600, −3.91523460680044068241241887717, −3.30350529781361205179862726188, −2.98951382154881400235982078814, −1.83639678084949254834894847007, −1.72835408891533948993926801453, 0, 0,
1.72835408891533948993926801453, 1.83639678084949254834894847007, 2.98951382154881400235982078814, 3.30350529781361205179862726188, 3.91523460680044068241241887717, 4.27479141814712282387756575600, 4.90708072138503181669603657872, 4.90779661389959046205516543029, 5.76737397285629147308665589277, 6.22207169980315580295092588391, 6.67938150915946395242158480830, 7.20563738270572016034536531760, 7.73944197492634853259667144352, 7.79289989260832537813691163972, 8.216077719992776177045841195155, 8.523708651450445713268596067504, 9.131772038426623968387761404142, 9.298828244529765316303193846723