Properties

Label 2.79.ak_fi
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $1 - 10 x + 138 x^{2} - 790 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.271132910622$, $\pm0.530634934843$
Angle rank:  $2$ (numerical)
Number field:  4.0.1400400.1
Galois group:  $D_{4}$
Jacobians:  $432$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5580$ $40064400$ $243467614620$ $1517127288710400$ $9468583643063749500$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $70$ $6418$ $493810$ $38950558$ $3077156350$ $243087899218$ $19203895200490$ $1517108686809598$ $119851596380803030$ $9468276089936289298$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 432 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The endomorphism algebra of this simple isogeny class is 4.0.1400400.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.k_fi$2$(not in LMFDB)