Invariants
Base field: | $\F_{89}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 302 x^{2} - 2136 x^{3} + 7921 x^{4}$ |
Frobenius angles: | $\pm0.162157367224$, $\pm0.369365674080$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.39600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $156$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6064$ | $62968576$ | $498048502576$ | $3937106688159744$ | $31181671544439813424$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $7950$ | $706482$ | $62750494$ | $5584050786$ | $496981598766$ | $44231350549074$ | $3936589004559934$ | $350356404478800258$ | $31181719919420527950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=68 x^6+72 x^5+12 x^4+88 x^3+79 x^2+35 x+6$
- $y^2=40 x^6+54 x^5+43 x^4+32 x^3+5 x^2+87 x+59$
- $y^2=39 x^6+47 x^5+69 x^4+66 x^3+43 x^2+64 x+3$
- $y^2=27 x^6+5 x^5+17 x^4+51 x^3+36 x^2+67 x+45$
- $y^2=67 x^6+67 x^5+48 x^4+43 x^3+75 x^2+25 x+53$
- $y^2=20 x^6+28 x^5+9 x^4+23 x^3+49 x^2+43 x+30$
- $y^2=32 x^6+35 x^5+31 x^4+63 x^3+9 x^2+15 x+18$
- $y^2=8 x^6+14 x^5+62 x^4+21 x^3+23 x^2+80 x+32$
- $y^2=31 x^6+70 x^5+64 x^4+72 x^3+57 x^2+14 x+38$
- $y^2=18 x^6+28 x^5+44 x^4+21 x^3+81 x^2+47 x+27$
- $y^2=39 x^6+42 x^5+68 x^4+39 x^3+19 x^2+67 x+80$
- $y^2=82 x^6+67 x^5+82 x^4+39 x^3+35 x^2+67 x+36$
- $y^2=14 x^6+53 x^5+77 x^4+88 x^3+49 x^2+25 x+2$
- $y^2=25 x^6+56 x^5+28 x^4+24 x^3+44 x^2+14 x+64$
- $y^2=10 x^6+48 x^5+70 x^4+34 x^3+87 x^2+17 x+27$
- $y^2=18 x^6+10 x^5+71 x^4+67 x^3+48 x^2+9 x+35$
- $y^2=63 x^6+70 x^5+54 x^4+46 x^3+25 x^2+12 x+26$
- $y^2=83 x^6+36 x^5+41 x^4+69 x^3+48 x^2+77 x+15$
- $y^2=27 x^6+34 x^5+75 x^4+18 x^3+54 x^2+62 x+4$
- $y^2=59 x^6+71 x^5+52 x^4+36 x^3+48 x^2+31 x+37$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$The endomorphism algebra of this simple isogeny class is 4.0.39600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.89.y_lq | $2$ | (not in LMFDB) |