| L(s) = 1 | + 3-s − 5-s − 4·7-s − 4·11-s − 15-s − 17-s − 19-s − 4·21-s + 8·23-s − 27-s + 6·29-s − 6·31-s − 4·33-s + 4·35-s + 8·37-s − 4·41-s − 12·43-s − 47-s − 2·49-s − 51-s − 5·53-s + 4·55-s − 57-s − 10·59-s − 14·61-s + 6·67-s + 8·69-s + ⋯ |
| L(s) = 1 | + 0.577·3-s − 0.447·5-s − 1.51·7-s − 1.20·11-s − 0.258·15-s − 0.242·17-s − 0.229·19-s − 0.872·21-s + 1.66·23-s − 0.192·27-s + 1.11·29-s − 1.07·31-s − 0.696·33-s + 0.676·35-s + 1.31·37-s − 0.624·41-s − 1.82·43-s − 0.145·47-s − 2/7·49-s − 0.140·51-s − 0.686·53-s + 0.539·55-s − 0.132·57-s − 1.30·59-s − 1.79·61-s + 0.733·67-s + 0.963·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1299600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1299600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8095973946\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8095973946\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.936633683336715192133654461454, −9.490569466185323981936903230696, −9.273543597525241943558225486854, −8.879933277381609031802718611186, −8.220413440744960637054566700392, −8.107650332960755336386650748805, −7.59494672793727622316772578214, −7.10764730579910796314033638024, −6.73094442762432761522906994012, −6.25729620937100098520054816486, −6.00564050687361173268780622435, −5.10247035472623644825125004760, −4.92770262612755435619333366564, −4.42771129142824449628815398124, −3.53830546618600769444687459202, −3.28166449189888195326264399220, −2.94951358973155154654716209911, −2.39866234635984487171182468256, −1.53749101803381352246038596213, −0.37173987528240481263761181968,
0.37173987528240481263761181968, 1.53749101803381352246038596213, 2.39866234635984487171182468256, 2.94951358973155154654716209911, 3.28166449189888195326264399220, 3.53830546618600769444687459202, 4.42771129142824449628815398124, 4.92770262612755435619333366564, 5.10247035472623644825125004760, 6.00564050687361173268780622435, 6.25729620937100098520054816486, 6.73094442762432761522906994012, 7.10764730579910796314033638024, 7.59494672793727622316772578214, 8.107650332960755336386650748805, 8.220413440744960637054566700392, 8.879933277381609031802718611186, 9.273543597525241943558225486854, 9.490569466185323981936903230696, 9.936633683336715192133654461454