Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x - 69 x^{2} - 146 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.129325725892$, $\pm0.795992392559$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{-3})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $15$ |
| Isomorphism classes: | 238 |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5113$ | $27656217$ | $151000633744$ | $806730107548329$ | $4297521343216366873$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $72$ | $5188$ | $388158$ | $28407748$ | $2073021192$ | $151335412558$ | $11047403384712$ | $806460125461636$ | $58871587552917774$ | $4297625828097776068$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):
- $y^2=58 x^6+58 x^5+13 x^4+48 x^3+4 x^2+5 x+28$
- $y^2=45 x^6+14 x^5+64 x^4+50 x^3+6 x^2+29 x+49$
- $y^2=5 x^6+5 x^3+42$
- $y^2=5 x^6+23 x^5+28 x^4+51 x^3+30 x^2+52 x+48$
- $y^2=5 x^6+25 x^3+63$
- $y^2=5 x^6+5 x^3+59$
- $y^2=5 x^6+5 x^3+31$
- $y^2=72 x^6+25 x^5+50 x^4+48 x^3+32 x^2+49 x+19$
- $y^2=64 x^6+17 x^5+35 x^4+11 x^3+61 x^2+65 x+7$
- $y^2=5 x^6+25 x^3+10$
- $y^2=x^6+3 x^5+13 x^4+22 x^3+43 x^2+64 x+1$
- $y^2=5 x^6+5 x^3+60$
- $y^2=5 x^6+25 x^3+66$
- $y^2=39 x^6+45 x^5+65 x^4+40 x^3+9 x^2+72 x+45$
- $y^2=5 x^6+5 x^3+20$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{3}}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{-3})\). |
| The base change of $A$ to $\F_{73^{3}}$ is 1.389017.aqo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2}) \)$)$ |
Base change
This is a primitive isogeny class.