Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x - 85 x^{2} - 178 x^{3} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.132862379603$, $\pm0.799529046269$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-3}, \sqrt{-22})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $48$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $7657$ | $61386169$ | $496241349136$ | $3937494572821225$ | $31181297317322594377$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $88$ | $7748$ | $703918$ | $62756676$ | $5583983768$ | $496983557486$ | $44231343897752$ | $3936588888557956$ | $350356405641304222$ | $31181719924525829828$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=88 x^6+14 x^5+80 x^4+67 x^3+52 x^2+25 x+79$
- $y^2=83 x^6+31 x^5+64 x^4+12 x^3+56 x^2+88 x+57$
- $y^2=13 x^6+51 x^5+66 x^4+39 x^3+76 x^2+17 x+21$
- $y^2=79 x^6+80 x^5+61 x^4+24 x^3+62 x^2+79 x+6$
- $y^2=81 x^6+35 x^5+71 x^4+58 x^3+45 x^2+8 x+57$
- $y^2=48 x^6+59 x^5+59 x^4+39 x^3+47 x^2+68 x+57$
- $y^2=77 x^6+37 x^5+20 x^4+28 x^3+65 x^2+86 x+14$
- $y^2=81 x^6+57 x^5+8 x^4+64 x^3+63 x^2+9 x+38$
- $y^2=77 x^6+56 x^5+22 x^4+20 x^3+4 x^2+70 x+23$
- $y^2=17 x^6+39 x^5+14 x^4+43 x^3+34 x^2+42 x+52$
- $y^2=21 x^6+69 x^5+23 x^4+15 x^3+78 x^2+20 x+60$
- $y^2=20 x^6+26 x^5+73 x^4+54 x^3+13 x^2+66 x+67$
- $y^2=28 x^6+3 x^4+84 x^3+63 x^2+47 x+25$
- $y^2=74 x^6+68 x^5+67 x^4+15 x^3+49 x^2+61 x+87$
- $y^2=27 x^6+3 x^5+8 x^4+31 x^3+68 x^2+23 x+35$
- $y^2=16 x^6+70 x^5+56 x^4+48 x^3+62 x^2+x+16$
- $y^2=33 x^6+83 x^5+47 x^4+18 x^3+x^2+31 x+38$
- $y^2=3 x^6+75 x^5+51 x^4+62 x^3+29 x^2+26 x+74$
- $y^2=24 x^6+21 x^5+26 x^4+21 x^3+29 x^2+55 x+80$
- $y^2=18 x^6+15 x^5+3 x^4+12 x^3+14 x^2+34 x+31$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{3}}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-22})\). |
| The base change of $A$ to $\F_{89^{3}}$ is 1.704969.aug 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22}) \)$)$ |
Base change
This is a primitive isogeny class.