| L(s) = 1 | − 2-s + 3·5-s + 5·7-s + 8-s − 3·10-s + 3·11-s + 10·13-s − 5·14-s − 16-s − 3·17-s − 5·19-s − 3·22-s + 3·23-s + 5·25-s − 10·26-s − 6·29-s + 4·31-s + 3·34-s + 15·35-s + 7·37-s + 5·38-s + 3·40-s − 18·41-s + 22·43-s − 3·46-s + 18·49-s − 5·50-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1.34·5-s + 1.88·7-s + 0.353·8-s − 0.948·10-s + 0.904·11-s + 2.77·13-s − 1.33·14-s − 1/4·16-s − 0.727·17-s − 1.14·19-s − 0.639·22-s + 0.625·23-s + 25-s − 1.96·26-s − 1.11·29-s + 0.718·31-s + 0.514·34-s + 2.53·35-s + 1.15·37-s + 0.811·38-s + 0.474·40-s − 2.81·41-s + 3.35·43-s − 0.442·46-s + 18/7·49-s − 0.707·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1285956 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.189497559\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.189497559\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.985413541299328583687788790165, −9.531839825282041212728865143932, −8.897557826754265740611833831606, −8.858249025202094601361118251707, −8.526470214405757806620769444914, −8.330505763909598493291323750498, −7.42880160330321178648643420657, −7.41505524817667468855690408781, −6.41135792438382055680359099547, −6.38066635759790739748394604443, −5.80642262808500219174224670333, −5.57626934615906133306985603133, −4.74194032930466284981216847931, −4.42531156920292385387827249016, −4.00718857618165977103205232663, −3.38205928983064962954836194584, −2.41227160379637542816328091597, −1.91619097732881201945307798283, −1.35141061699251876538048749812, −1.09292580925615169553171066545,
1.09292580925615169553171066545, 1.35141061699251876538048749812, 1.91619097732881201945307798283, 2.41227160379637542816328091597, 3.38205928983064962954836194584, 4.00718857618165977103205232663, 4.42531156920292385387827249016, 4.74194032930466284981216847931, 5.57626934615906133306985603133, 5.80642262808500219174224670333, 6.38066635759790739748394604443, 6.41135792438382055680359099547, 7.41505524817667468855690408781, 7.42880160330321178648643420657, 8.330505763909598493291323750498, 8.526470214405757806620769444914, 8.858249025202094601361118251707, 8.897557826754265740611833831606, 9.531839825282041212728865143932, 9.985413541299328583687788790165