Properties

Label 2-1071-1.1-c1-0-27
Degree $2$
Conductor $1071$
Sign $-1$
Analytic cond. $8.55197$
Root an. cond. $2.92437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 5-s + 7-s + 5·11-s − 5·13-s + 4·16-s − 17-s − 5·19-s + 2·20-s + 23-s − 4·25-s − 2·28-s + 6·29-s − 6·31-s − 35-s + 4·37-s − 7·41-s − 7·43-s − 10·44-s − 6·47-s + 49-s + 10·52-s − 6·53-s − 5·55-s − 14·59-s − 8·64-s + 5·65-s + ⋯
L(s)  = 1  − 4-s − 0.447·5-s + 0.377·7-s + 1.50·11-s − 1.38·13-s + 16-s − 0.242·17-s − 1.14·19-s + 0.447·20-s + 0.208·23-s − 4/5·25-s − 0.377·28-s + 1.11·29-s − 1.07·31-s − 0.169·35-s + 0.657·37-s − 1.09·41-s − 1.06·43-s − 1.50·44-s − 0.875·47-s + 1/7·49-s + 1.38·52-s − 0.824·53-s − 0.674·55-s − 1.82·59-s − 64-s + 0.620·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1071 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1071\)    =    \(3^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(8.55197\)
Root analytic conductor: \(2.92437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1071,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.425392701566482270296626907091, −8.692150001217748984746063838156, −7.969127769610394273522197763302, −7.01545680207915144778802109603, −6.07343061968960142265880942129, −4.79428223153719685759494266821, −4.36810445385342074666389399007, −3.32489094027495759351806808784, −1.69787774382846645869535268108, 0, 1.69787774382846645869535268108, 3.32489094027495759351806808784, 4.36810445385342074666389399007, 4.79428223153719685759494266821, 6.07343061968960142265880942129, 7.01545680207915144778802109603, 7.969127769610394273522197763302, 8.692150001217748984746063838156, 9.425392701566482270296626907091

Graph of the $Z$-function along the critical line