| L(s) = 1 | − 2·7-s + 2·9-s − 2·11-s − 12·23-s + 2·25-s + 12·29-s − 16·37-s + 6·43-s − 3·49-s − 4·53-s − 4·63-s − 6·67-s − 12·71-s + 4·77-s − 5·81-s − 4·99-s + 6·107-s − 4·109-s − 12·113-s − 18·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
| L(s) = 1 | − 0.755·7-s + 2/3·9-s − 0.603·11-s − 2.50·23-s + 2/5·25-s + 2.22·29-s − 2.63·37-s + 0.914·43-s − 3/7·49-s − 0.549·53-s − 0.503·63-s − 0.733·67-s − 1.42·71-s + 0.455·77-s − 5/9·81-s − 0.402·99-s + 0.580·107-s − 0.383·109-s − 1.12·113-s − 1.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200704 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.746524964287837260452019421604, −8.401247136974066491031045692871, −7.964160535307739886485964146967, −7.34866174415253259695739288264, −6.95776410404516941809188010248, −6.38002916034409695923504060740, −6.02980111525064099969572226310, −5.41843571596296885019384326168, −4.72834457742773847842582342101, −4.30804269874971598210063051924, −3.61629865853342758934189995020, −3.03423176576253579061835864271, −2.30748650040207537967845148195, −1.45805955405842403317092570268, 0,
1.45805955405842403317092570268, 2.30748650040207537967845148195, 3.03423176576253579061835864271, 3.61629865853342758934189995020, 4.30804269874971598210063051924, 4.72834457742773847842582342101, 5.41843571596296885019384326168, 6.02980111525064099969572226310, 6.38002916034409695923504060740, 6.95776410404516941809188010248, 7.34866174415253259695739288264, 7.964160535307739886485964146967, 8.401247136974066491031045692871, 8.746524964287837260452019421604