Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 2 x + 67 x^{2} )( 1 + 4 x + 67 x^{2} )$ |
| $1 + 6 x + 142 x^{2} + 402 x^{3} + 4489 x^{4}$ | |
| Frobenius angles: | $\pm0.538985133153$, $\pm0.578570930462$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $80$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5040$ | $21288960$ | $90118208880$ | $405808452403200$ | $1822988492244889200$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $4738$ | $299630$ | $20138254$ | $1350236714$ | $90458882386$ | $6060703019438$ | $406067670940126$ | $27206534953103690$ | $1822837803356510818$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 80 curves (of which all are hyperelliptic):
- $y^2=x^6+23 x^5+10 x^4+14 x^3+62 x^2+56 x+25$
- $y^2=58 x^6+18 x^5+32 x^4+7 x^3+32 x^2+18 x+58$
- $y^2=32 x^6+10 x^5+58 x^4+36 x^3+58 x^2+10 x+32$
- $y^2=x^6+52 x^5+10 x^4+51 x^3+4 x^2+11 x+14$
- $y^2=4 x^6+42 x^5+66 x^4+52 x^3+66 x^2+42 x+4$
- $y^2=9 x^6+48 x^5+2 x^4+22 x^3+58 x^2+34 x+9$
- $y^2=30 x^6+39 x^5+21 x^4+44 x^3+21 x^2+39 x+30$
- $y^2=55 x^6+21 x^5+15 x^4+48 x^3+15 x^2+21 x+55$
- $y^2=36 x^6+33 x^5+16 x^4+20 x^3+16 x^2+33 x+36$
- $y^2=31 x^6+44 x^5+36 x^4+x^3+36 x^2+44 x+31$
- $y^2=47 x^6+2 x^5+17 x^4+48 x^3+17 x^2+2 x+47$
- $y^2=62 x^6+37 x^5+37 x^4+47 x^3+37 x^2+37 x+62$
- $y^2=37 x^6+11 x^5+36 x^4+42 x^3+22 x^2+13 x+23$
- $y^2=43 x^6+23 x^5+26 x^4+39 x^3+26 x^2+23 x+43$
- $y^2=53 x^6+57 x^5+33 x^4+47 x^3+33 x^2+57 x+53$
- $y^2=54 x^6+55 x^5+9 x^4+56 x^3+9 x^2+55 x+54$
- $y^2=26 x^6+10 x^5+59 x^3+64 x+35$
- $y^2=12 x^6+34 x^5+57 x^4+4 x^3+57 x^2+34 x+12$
- $y^2=48 x^6+29 x^5+12 x^4+26 x^3+43 x^2+49 x+18$
- $y^2=28 x^6+33 x^5+2 x^4+33 x^3+58 x^2+15 x+28$
- and 60 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The isogeny class factors as 1.67.c $\times$ 1.67.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.ag_fm | $2$ | (not in LMFDB) |
| 2.67.ac_ew | $2$ | (not in LMFDB) |
| 2.67.c_ew | $2$ | (not in LMFDB) |