Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 10 x + 43 x^{2} )( 1 + 4 x + 43 x^{2} )$ |
| $1 - 6 x + 46 x^{2} - 258 x^{3} + 1849 x^{4}$ | |
| Frobenius angles: | $\pm0.223975234504$, $\pm0.598655510457$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $216$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1632$ | $3525120$ | $6308510688$ | $11696066150400$ | $21618362267131872$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1906$ | $79346$ | $3421102$ | $147055238$ | $6321392674$ | $271817529266$ | $11688200243998$ | $502592582620838$ | $21611481805043986$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 216 curves (of which all are hyperelliptic):
- $y^2=17 x^6+22 x^5+35 x^4+x^3+6 x^2+33 x+40$
- $y^2=11 x^6+4 x^5+36 x^4+3 x^3+31 x^2+10 x+41$
- $y^2=x^6+x^5+32 x^4+41 x^3+3 x^2+19 x+37$
- $y^2=41 x^6+27 x^5+18 x^4+42 x^3+2 x^2+19 x+31$
- $y^2=9 x^6+3 x^5+41 x^4+3 x^3+29 x^2+34 x+16$
- $y^2=40 x^6+29 x^5+37 x^4+28 x^3+31 x^2+29 x+31$
- $y^2=24 x^6+10 x^5+3 x^4+8 x^3+40 x^2+18 x+13$
- $y^2=3 x^6+2 x^5+35 x^4+25 x^2+37 x+12$
- $y^2=8 x^6+28 x^5+41 x^4+36 x^3+26 x^2+24 x+3$
- $y^2=37 x^6+10 x^5+6 x^4+38 x^3+37 x^2+15 x+42$
- $y^2=7 x^6+41 x^5+5 x^4+9 x^3+17 x^2+12 x+2$
- $y^2=29 x^6+19 x^5+22 x^4+30 x^3+24 x^2+3 x+41$
- $y^2=40 x^6+35 x^5+40 x^4+11 x^3+29 x^2+32 x+7$
- $y^2=38 x^6+3 x^5+16 x^4+22 x^3+24 x^2+35 x+35$
- $y^2=9 x^6+40 x^5+4 x^4+11 x^3+11 x^2+28 x+14$
- $y^2=38 x^6+31 x^5+10 x^4+18 x^3+23 x^2+12 x+8$
- $y^2=6 x^6+21 x^5+3 x^4+21 x^3+38 x^2+6 x+6$
- $y^2=26 x^6+6 x^5+22 x^4+16 x^3+6 x^2+13 x$
- $y^2=12 x^6+11 x^5+24 x^4+20 x^3+11 x^2+15 x+8$
- $y^2=33 x^6+25 x^5+10 x^4+41 x^3+38 x^2+17 x+12$
- and 196 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The isogeny class factors as 1.43.ak $\times$ 1.43.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.ao_ew | $2$ | (not in LMFDB) |
| 2.43.g_bu | $2$ | (not in LMFDB) |
| 2.43.o_ew | $2$ | (not in LMFDB) |