Properties

Label 2.43.ag_bu
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $( 1 - 10 x + 43 x^{2} )( 1 + 4 x + 43 x^{2} )$
  $1 - 6 x + 46 x^{2} - 258 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.223975234504$, $\pm0.598655510457$
Angle rank:  $2$ (numerical)
Jacobians:  $216$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1632$ $3525120$ $6308510688$ $11696066150400$ $21618362267131872$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $38$ $1906$ $79346$ $3421102$ $147055238$ $6321392674$ $271817529266$ $11688200243998$ $502592582620838$ $21611481805043986$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 216 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43}$.

Endomorphism algebra over $\F_{43}$
The isogeny class factors as 1.43.ak $\times$ 1.43.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.ao_ew$2$(not in LMFDB)
2.43.g_bu$2$(not in LMFDB)
2.43.o_ew$2$(not in LMFDB)