L(s) = 1 | + 2-s + 4-s + 8-s + 9-s + 2·13-s + 16-s − 6·17-s + 18-s − 10·25-s + 2·26-s − 8·29-s + 32-s − 6·34-s + 36-s − 2·37-s − 20·41-s − 5·49-s − 10·50-s + 2·52-s − 2·53-s − 8·58-s + 4·61-s + 64-s − 6·68-s + 72-s − 6·73-s − 2·74-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s + 1/3·9-s + 0.554·13-s + 1/4·16-s − 1.45·17-s + 0.235·18-s − 2·25-s + 0.392·26-s − 1.48·29-s + 0.176·32-s − 1.02·34-s + 1/6·36-s − 0.328·37-s − 3.12·41-s − 5/7·49-s − 1.41·50-s + 0.277·52-s − 0.274·53-s − 1.05·58-s + 0.512·61-s + 1/8·64-s − 0.727·68-s + 0.117·72-s − 0.702·73-s − 0.232·74-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 394272 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 394272 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.325592580285100754277675037249, −8.093256336428860279579050698932, −7.23351767004553543452225501388, −7.07433016066728121125499972487, −6.58594129796607005303022052317, −5.85671815365648243578194470848, −5.79702284200659259065474780337, −4.93990077281798148757107408401, −4.62546171656297684808475214190, −3.81933209527513554138512512650, −3.69745098069647884007817791582, −2.91055328661416272205710045681, −1.84137075722148284400280530836, −1.81998707337995438672490638604, 0,
1.81998707337995438672490638604, 1.84137075722148284400280530836, 2.91055328661416272205710045681, 3.69745098069647884007817791582, 3.81933209527513554138512512650, 4.62546171656297684808475214190, 4.93990077281798148757107408401, 5.79702284200659259065474780337, 5.85671815365648243578194470848, 6.58594129796607005303022052317, 7.07433016066728121125499972487, 7.23351767004553543452225501388, 8.093256336428860279579050698932, 8.325592580285100754277675037249