L(s) = 1 | − 3-s + 4-s + 6·7-s + 9-s − 12-s + 2·13-s + 16-s + 6·19-s − 6·21-s − 10·25-s − 27-s + 6·28-s − 12·31-s + 36-s − 2·37-s − 2·39-s + 24·43-s − 48-s + 13·49-s + 2·52-s − 6·57-s + 4·61-s + 6·63-s + 64-s + 4·67-s − 6·73-s + 10·75-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/2·4-s + 2.26·7-s + 1/3·9-s − 0.288·12-s + 0.554·13-s + 1/4·16-s + 1.37·19-s − 1.30·21-s − 2·25-s − 0.192·27-s + 1.13·28-s − 2.15·31-s + 1/6·36-s − 0.328·37-s − 0.320·39-s + 3.65·43-s − 0.144·48-s + 13/7·49-s + 0.277·52-s − 0.794·57-s + 0.512·61-s + 0.755·63-s + 1/8·64-s + 0.488·67-s − 0.702·73-s + 1.15·75-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147852 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147852 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.106698295\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.106698295\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.435475333424262584223799187666, −8.792199929808722838659257912612, −8.093256336428860279579050698932, −7.80630444762192273011758362778, −7.43313124434508075165402720464, −7.07433016066728121125499972487, −6.01497418650790910506005868954, −5.85671815365648243578194470848, −5.18717331204885286486593982487, −4.93990077281798148757107408401, −3.90575639700327756731471854422, −3.81933209527513554138512512650, −2.46404015546282379837947782123, −1.81998707337995438672490638604, −1.15779711357483022032503243329,
1.15779711357483022032503243329, 1.81998707337995438672490638604, 2.46404015546282379837947782123, 3.81933209527513554138512512650, 3.90575639700327756731471854422, 4.93990077281798148757107408401, 5.18717331204885286486593982487, 5.85671815365648243578194470848, 6.01497418650790910506005868954, 7.07433016066728121125499972487, 7.43313124434508075165402720464, 7.80630444762192273011758362778, 8.093256336428860279579050698932, 8.792199929808722838659257912612, 9.435475333424262584223799187666