| L(s) = 1 | + 3-s + 4·5-s + 9-s − 2·11-s + 4·15-s − 6·23-s + 11·25-s + 27-s − 8·31-s − 2·33-s + 2·37-s + 4·45-s − 2·47-s + 8·49-s + 14·53-s − 8·55-s + 8·59-s + 14·67-s − 6·69-s + 11·75-s + 81-s − 8·89-s − 8·93-s − 18·97-s − 2·99-s + 10·103-s + 2·111-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 1.78·5-s + 1/3·9-s − 0.603·11-s + 1.03·15-s − 1.25·23-s + 11/5·25-s + 0.192·27-s − 1.43·31-s − 0.348·33-s + 0.328·37-s + 0.596·45-s − 0.291·47-s + 8/7·49-s + 1.92·53-s − 1.07·55-s + 1.04·59-s + 1.71·67-s − 0.722·69-s + 1.27·75-s + 1/9·81-s − 0.847·89-s − 0.829·93-s − 1.82·97-s − 0.201·99-s + 0.985·103-s + 0.189·111-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5227200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5227200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(4.290504606\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.290504606\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.22081445821323812185703917019, −6.84339293447776337810667502250, −6.59068565317438925155567612097, −5.90011308306553386127242469516, −5.66299449995493948247146288710, −5.42690899293069439365063838654, −4.97090328020147701564370881997, −4.32125063493921347349656123492, −3.90946734191003820640835947158, −3.44258566124391067400014378658, −2.73044273296147154407240924696, −2.37859158699726680228149915057, −2.03340786319214331073935928918, −1.50449458536836257081068089117, −0.66894689054323161210674966401,
0.66894689054323161210674966401, 1.50449458536836257081068089117, 2.03340786319214331073935928918, 2.37859158699726680228149915057, 2.73044273296147154407240924696, 3.44258566124391067400014378658, 3.90946734191003820640835947158, 4.32125063493921347349656123492, 4.97090328020147701564370881997, 5.42690899293069439365063838654, 5.66299449995493948247146288710, 5.90011308306553386127242469516, 6.59068565317438925155567612097, 6.84339293447776337810667502250, 7.22081445821323812185703917019