Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 89 x^{2} )( 1 + 8 x + 89 x^{2} )$ |
| $1 + 8 x + 178 x^{2} + 712 x^{3} + 7921 x^{4}$ | |
| Frobenius angles: | $\pm0.5$, $\pm0.639374052381$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $384$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8820$ | $65091600$ | $495837829620$ | $3935773487923200$ | $31182399900885410100$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $98$ | $8214$ | $703346$ | $62729246$ | $5584181218$ | $496981473462$ | $44231333877682$ | $3936588797602366$ | $350356402858995554$ | $31181719937474975574$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 384 curves (of which all are hyperelliptic):
- $y^2=71 x^6+52 x^5+27 x^4+77 x^3+48 x^2+27 x+45$
- $y^2=84 x^6+45 x^5+88 x^4+72 x^3+88 x^2+45 x+84$
- $y^2=67 x^6+4 x^5+36 x^4+67 x^3+59 x^2+61 x+60$
- $y^2=61 x^6+7 x^5+53 x^4+33 x^3+67 x^2+12 x+43$
- $y^2=83 x^6+81 x^5+9 x^4+46 x^3+40 x^2+51 x+24$
- $y^2=51 x^6+77 x^5+48 x^4+78 x^3+72 x^2+73 x+82$
- $y^2=17 x^6+87 x^5+54 x^4+39 x^3+56 x^2+2 x+45$
- $y^2=10 x^6+12 x^5+83 x^4+63 x^3+83 x^2+12 x+10$
- $y^2=68 x^6+51 x^5+63 x^4+26 x^3+61 x^2+38 x+15$
- $y^2=44 x^6+74 x^5+79 x^4+64 x^3+26 x^2+65 x+81$
- $y^2=83 x^6+80 x^5+67 x^4+85 x^3+23 x^2+3 x+59$
- $y^2=83 x^6+x^5+78 x^4+69 x^3+x^2+4 x+39$
- $y^2=18 x^6+6 x^5+27 x^4+65 x^3+33 x^2+65 x+1$
- $y^2=60 x^6+35 x^5+48 x^4+45 x^3+48 x^2+35 x+60$
- $y^2=60 x^6+22 x^5+64 x^4+77 x^3+85 x^2+17 x+18$
- $y^2=80 x^6+68 x^5+10 x^4+73 x^3+25 x^2+69 x+4$
- $y^2=40 x^6+45 x^5+30 x^4+60 x^3+30 x^2+45 x+40$
- $y^2=7 x^6+80 x^5+39 x^4+64 x^3+15 x^2+5 x+7$
- $y^2=44 x^6+31 x^5+73 x^4+6 x^3+5 x^2+59 x+9$
- $y^2=41 x^6+23 x^5+8 x^4+27 x^3+8 x^2+23 x+41$
- and 364 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89^{2}}$.
Endomorphism algebra over $\F_{89}$| The isogeny class factors as 1.89.a $\times$ 1.89.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.ek $\times$ 1.7921.gw. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.ai_gw | $2$ | (not in LMFDB) |