Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 24 x^{2} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.226908719411$, $\pm0.773091280589$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-142}, \sqrt{190})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $48$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6866$ | $47141956$ | $326940855554$ | $2253545590882576$ | $15516041181979059986$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $6842$ | $571788$ | $47484726$ | $3939040644$ | $326941337738$ | $27136050989628$ | $2252292073386718$ | $186940255267540404$ | $15516041176752266522$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=72 x^6+6 x^5+19 x^4+58 x^3+6 x^2+46 x+70$
- $y^2=61 x^6+12 x^5+38 x^4+33 x^3+12 x^2+9 x+57$
- $y^2=37 x^6+20 x^5+17 x^4+51 x^3+33 x^2+62 x+30$
- $y^2=74 x^6+40 x^5+34 x^4+19 x^3+66 x^2+41 x+60$
- $y^2=59 x^6+63 x^5+63 x^4+33 x^3+33 x^2+66 x+61$
- $y^2=35 x^6+43 x^5+43 x^4+66 x^3+66 x^2+49 x+39$
- $y^2=74 x^6+5 x^5+26 x^4+79 x^3+13 x^2+18 x+76$
- $y^2=65 x^6+10 x^5+52 x^4+75 x^3+26 x^2+36 x+69$
- $y^2=39 x^6+24 x^5+22 x^4+78 x^3+20 x^2+63 x+3$
- $y^2=78 x^6+48 x^5+44 x^4+73 x^3+40 x^2+43 x+6$
- $y^2=34 x^6+66 x^5+61 x^4+19 x^3+40 x^2+17 x+74$
- $y^2=68 x^6+49 x^5+39 x^4+38 x^3+80 x^2+34 x+65$
- $y^2=49 x^6+46 x^5+27 x^4+29 x^3+34 x^2+9 x+57$
- $y^2=15 x^6+9 x^5+54 x^4+58 x^3+68 x^2+18 x+31$
- $y^2=6 x^6+32 x^5+69 x^4+52 x^3+40 x^2+42 x+25$
- $y^2=12 x^6+64 x^5+55 x^4+21 x^3+80 x^2+x+50$
- $y^2=10 x^6+20 x^5+31 x^3+31 x^2+7 x+58$
- $y^2=20 x^6+40 x^5+62 x^3+62 x^2+14 x+33$
- $y^2=71 x^6+18 x^5+61 x^4+20 x^3+6 x^2+71 x+52$
- $y^2=59 x^6+36 x^5+39 x^4+40 x^3+12 x^2+59 x+21$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-142}, \sqrt{190})\). |
| The base change of $A$ to $\F_{83^{2}}$ is 1.6889.ay 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6745}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.83.a_y | $4$ | (not in LMFDB) |