Properties

Label 4-148e2-1.1-c1e2-0-8
Degree $4$
Conductor $21904$
Sign $-1$
Analytic cond. $1.39661$
Root an. cond. $1.08709$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 2·4-s − 4·5-s + 2·7-s − 3·9-s − 2·11-s − 4·12-s − 4·13-s − 8·15-s + 4·16-s + 8·20-s + 4·21-s + 12·23-s + 6·25-s − 14·27-s − 4·28-s − 12·29-s − 8·31-s − 4·33-s − 8·35-s + 6·36-s + 2·37-s − 8·39-s − 18·41-s + 4·43-s + 4·44-s + 12·45-s + ⋯
L(s)  = 1  + 1.15·3-s − 4-s − 1.78·5-s + 0.755·7-s − 9-s − 0.603·11-s − 1.15·12-s − 1.10·13-s − 2.06·15-s + 16-s + 1.78·20-s + 0.872·21-s + 2.50·23-s + 6/5·25-s − 2.69·27-s − 0.755·28-s − 2.22·29-s − 1.43·31-s − 0.696·33-s − 1.35·35-s + 36-s + 0.328·37-s − 1.28·39-s − 2.81·41-s + 0.609·43-s + 0.603·44-s + 1.78·45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(21904\)    =    \(2^{4} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(1.39661\)
Root analytic conductor: \(1.08709\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 21904,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + p T^{2} \)
37$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 - T + p T^{2} )^{2} \) 2.3.ac_h
5$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.5.e_k
7$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + T + p T^{2} ) \) 2.7.ac_l
11$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.11.c_h
13$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.13.e_ba
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.17.a_ac
19$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.19.a_bi
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \) 2.23.am_de
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.29.m_dq
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.31.i_da
41$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \) 2.41.s_gh
43$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.43.ae_cc
47$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 3 T + p T^{2} ) \) 2.47.ak_el
53$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.53.ag_db
59$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 - 4 T + p T^{2} ) \) 2.59.aq_gk
61$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.61.a_cg
67$C_2$$\times$$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.67.ai_di
71$C_2$$\times$$C_2$ \( ( 1 + 3 T + p T^{2} )( 1 + 15 T + p T^{2} ) \) 2.71.s_hf
73$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.73.ag_dn
79$C_2$$\times$$C_2$ \( ( 1 + 6 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.79.q_ik
83$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - T + p T^{2} ) \) 2.83.ak_gt
89$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 - 2 T + p T^{2} ) \) 2.89.ai_hi
97$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + p T^{2} ) \) 2.97.ai_hm
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.4804132508, −15.1978176633, −14.8059546844, −14.6280958917, −14.2687617053, −13.4643580848, −13.0450433708, −12.8187428343, −11.7961223953, −11.6538652075, −11.1833016517, −10.6206613214, −9.81996681750, −9.03234585169, −8.87881945327, −8.45778768172, −7.73434658622, −7.59911177067, −7.07951791765, −5.44973416215, −5.32652803781, −4.53527407985, −3.50910294340, −3.46400857722, −2.32683032801, 0, 2.32683032801, 3.46400857722, 3.50910294340, 4.53527407985, 5.32652803781, 5.44973416215, 7.07951791765, 7.59911177067, 7.73434658622, 8.45778768172, 8.87881945327, 9.03234585169, 9.81996681750, 10.6206613214, 11.1833016517, 11.6538652075, 11.7961223953, 12.8187428343, 13.0450433708, 13.4643580848, 14.2687617053, 14.6280958917, 14.8059546844, 15.1978176633, 15.4804132508

Graph of the $Z$-function along the critical line