L(s) = 1 | + 2·3-s − 2·4-s − 4·5-s + 2·7-s − 3·9-s − 2·11-s − 4·12-s − 4·13-s − 8·15-s + 4·16-s + 8·20-s + 4·21-s + 12·23-s + 6·25-s − 14·27-s − 4·28-s − 12·29-s − 8·31-s − 4·33-s − 8·35-s + 6·36-s + 2·37-s − 8·39-s − 18·41-s + 4·43-s + 4·44-s + 12·45-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 4-s − 1.78·5-s + 0.755·7-s − 9-s − 0.603·11-s − 1.15·12-s − 1.10·13-s − 2.06·15-s + 16-s + 1.78·20-s + 0.872·21-s + 2.50·23-s + 6/5·25-s − 2.69·27-s − 0.755·28-s − 2.22·29-s − 1.43·31-s − 0.696·33-s − 1.35·35-s + 36-s + 0.328·37-s − 1.28·39-s − 2.81·41-s + 0.609·43-s + 0.603·44-s + 1.78·45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.4804132508, −15.1978176633, −14.8059546844, −14.6280958917, −14.2687617053, −13.4643580848, −13.0450433708, −12.8187428343, −11.7961223953, −11.6538652075, −11.1833016517, −10.6206613214, −9.81996681750, −9.03234585169, −8.87881945327, −8.45778768172, −7.73434658622, −7.59911177067, −7.07951791765, −5.44973416215, −5.32652803781, −4.53527407985, −3.50910294340, −3.46400857722, −2.32683032801, 0,
2.32683032801, 3.46400857722, 3.50910294340, 4.53527407985, 5.32652803781, 5.44973416215, 7.07951791765, 7.59911177067, 7.73434658622, 8.45778768172, 8.87881945327, 9.03234585169, 9.81996681750, 10.6206613214, 11.1833016517, 11.6538652075, 11.7961223953, 12.8187428343, 13.0450433708, 13.4643580848, 14.2687617053, 14.6280958917, 14.8059546844, 15.1978176633, 15.4804132508