Properties

Label 2.79.q_ik
Base field $\F_{79}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{79}$
Dimension:  $2$
L-polynomial:  $( 1 + 6 x + 79 x^{2} )( 1 + 10 x + 79 x^{2} )$
  $1 + 16 x + 218 x^{2} + 1264 x^{3} + 6241 x^{4}$
Frobenius angles:  $\pm0.609590214721$, $\pm0.690177289346$
Angle rank:  $2$ (numerical)
Jacobians:  $128$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $7740$ $40093200$ $241820022780$ $1517370454656000$ $9468666064471016700$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $96$ $6422$ $490464$ $38956798$ $3077183136$ $243086096342$ $19203910692384$ $1517108876799358$ $119851595467420896$ $9468276082613351702$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{79}$.

Endomorphism algebra over $\F_{79}$
The isogeny class factors as 1.79.g $\times$ 1.79.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.79.aq_ik$2$(not in LMFDB)
2.79.ae_du$2$(not in LMFDB)
2.79.e_du$2$(not in LMFDB)