Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 6 x + 79 x^{2} )( 1 + 10 x + 79 x^{2} )$ |
$1 + 16 x + 218 x^{2} + 1264 x^{3} + 6241 x^{4}$ | |
Frobenius angles: | $\pm0.609590214721$, $\pm0.690177289346$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $128$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7740$ | $40093200$ | $241820022780$ | $1517370454656000$ | $9468666064471016700$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $96$ | $6422$ | $490464$ | $38956798$ | $3077183136$ | $243086096342$ | $19203910692384$ | $1517108876799358$ | $119851595467420896$ | $9468276082613351702$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 128 curves (of which all are hyperelliptic):
- $y^2=7 x^6+12 x^5+66 x^4+23 x^3+66 x^2+12 x+7$
- $y^2=72 x^6+19 x^5+70 x^4+33 x^3+12 x^2+38 x+4$
- $y^2=31 x^6+15 x^5+37 x^4+11 x^3+14 x^2+28 x+72$
- $y^2=22 x^6+37 x^5+19 x^4+36 x^3+19 x^2+37 x+22$
- $y^2=32 x^6+24 x^4+24 x^3+24 x^2+32$
- $y^2=34 x^6+12 x^5+18 x^4+71 x^3+18 x^2+12 x+34$
- $y^2=18 x^6+59 x^5+51 x^4+35 x^3+52 x^2+9 x+72$
- $y^2=54 x^6+49 x^5+47 x^4+4 x^3+15 x^2+38 x+37$
- $y^2=67 x^6+47 x^5+10 x^4+41 x^3+17 x+52$
- $y^2=15 x^6+15 x^5+33 x^4+38 x^3+69 x^2+14 x+58$
- $y^2=22 x^6+59 x^5+60 x^4+46 x^3+19 x^2+x+44$
- $y^2=13 x^6+21 x^5+49 x^4+51 x^3+76 x^2+55 x+70$
- $y^2=48 x^6+24 x^5+21 x^4+28 x^3+22 x^2+43 x+60$
- $y^2=33 x^6+x^5+44 x^4+55 x^3+44 x^2+x+33$
- $y^2=67 x^6+16 x^5+48 x^4+4 x^3+29 x^2+2 x+46$
- $y^2=73 x^6+42 x^5+5 x^4+78 x^3+73 x^2+70 x+65$
- $y^2=70 x^6+22 x^5+76 x^4+34 x^3+22 x^2+42 x+47$
- $y^2=31 x^6+56 x^5+7 x^4+68 x^3+7 x^2+56 x+31$
- $y^2=23 x^6+44 x^5+76 x^4+12 x^3+76 x^2+44 x+23$
- $y^2=64 x^6+64 x^5+77 x^3+4 x+1$
- and 108 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The isogeny class factors as 1.79.g $\times$ 1.79.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.aq_ik | $2$ | (not in LMFDB) |
2.79.ae_du | $2$ | (not in LMFDB) |
2.79.e_du | $2$ | (not in LMFDB) |