Properties

Label 2-316e2-1.1-c1-0-3
Degree $2$
Conductor $99856$
Sign $1$
Analytic cond. $797.354$
Root an. cond. $28.2374$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·7-s − 3·9-s + 2·11-s − 2·13-s − 3·17-s − 23-s − 5·25-s + 6·29-s + 4·31-s − 4·37-s − 7·41-s + 8·43-s + 2·49-s + 12·53-s − 14·59-s + 6·61-s − 9·63-s + 2·67-s − 9·71-s + 3·73-s + 6·77-s + 9·81-s − 2·83-s − 89-s − 6·91-s − 14·97-s − 6·99-s + ⋯
L(s)  = 1  + 1.13·7-s − 9-s + 0.603·11-s − 0.554·13-s − 0.727·17-s − 0.208·23-s − 25-s + 1.11·29-s + 0.718·31-s − 0.657·37-s − 1.09·41-s + 1.21·43-s + 2/7·49-s + 1.64·53-s − 1.82·59-s + 0.768·61-s − 1.13·63-s + 0.244·67-s − 1.06·71-s + 0.351·73-s + 0.683·77-s + 81-s − 0.219·83-s − 0.105·89-s − 0.628·91-s − 1.42·97-s − 0.603·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99856 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(99856\)    =    \(2^{4} \cdot 79^{2}\)
Sign: $1$
Analytic conductor: \(797.354\)
Root analytic conductor: \(28.2374\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 99856,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.928648641\)
\(L(\frac12)\) \(\approx\) \(1.928648641\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
79 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85392983341274, −13.51070320049834, −12.68684490177863, −12.08430409878384, −11.72342974580183, −11.53131515421566, −10.79009155527951, −10.44620598440685, −9.800656215956206, −9.223561141614132, −8.602728394665634, −8.441784026999492, −7.769669618587392, −7.322806641170819, −6.575917059403855, −6.201706207842362, −5.473171922450024, −5.078709201760019, −4.415811097211762, −4.033498487738728, −3.185388779036137, −2.547394689229884, −2.009293537765588, −1.323288907071228, −0.4377693814875211, 0.4377693814875211, 1.323288907071228, 2.009293537765588, 2.547394689229884, 3.185388779036137, 4.033498487738728, 4.415811097211762, 5.078709201760019, 5.473171922450024, 6.201706207842362, 6.575917059403855, 7.322806641170819, 7.769669618587392, 8.441784026999492, 8.602728394665634, 9.223561141614132, 9.800656215956206, 10.44620598440685, 10.79009155527951, 11.53131515421566, 11.72342974580183, 12.08430409878384, 12.68684490177863, 13.51070320049834, 13.85392983341274

Graph of the $Z$-function along the critical line