Properties

Label 2-988-1.1-c1-0-16
Degree $2$
Conductor $988$
Sign $-1$
Analytic cond. $7.88921$
Root an. cond. $2.80877$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s − 3·9-s − 2·11-s − 13-s − 7·17-s + 19-s − 5·23-s − 25-s + 2·29-s − 3·31-s − 4·35-s + 7·37-s + 7·41-s − 9·43-s − 6·45-s − 2·47-s − 3·49-s + 6·53-s − 4·55-s + 3·59-s + 11·61-s + 6·63-s − 2·65-s − 3·67-s − 16·71-s + 2·73-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s − 9-s − 0.603·11-s − 0.277·13-s − 1.69·17-s + 0.229·19-s − 1.04·23-s − 1/5·25-s + 0.371·29-s − 0.538·31-s − 0.676·35-s + 1.15·37-s + 1.09·41-s − 1.37·43-s − 0.894·45-s − 0.291·47-s − 3/7·49-s + 0.824·53-s − 0.539·55-s + 0.390·59-s + 1.40·61-s + 0.755·63-s − 0.248·65-s − 0.366·67-s − 1.89·71-s + 0.234·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 988 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 988 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(988\)    =    \(2^{2} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(7.88921\)
Root analytic conductor: \(2.80877\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 988,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 7 T + p T^{2} \) 1.17.h
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.618311670709962385928710045291, −8.852788584124571379023099594667, −8.017929270255846081027719057360, −6.84712659276725306895566889448, −6.08513441068412309841685958980, −5.43118747128809654374806358340, −4.24150873987783380110088283702, −2.89408369476180701304993257526, −2.13010013912102737199678255096, 0, 2.13010013912102737199678255096, 2.89408369476180701304993257526, 4.24150873987783380110088283702, 5.43118747128809654374806358340, 6.08513441068412309841685958980, 6.84712659276725306895566889448, 8.017929270255846081027719057360, 8.852788584124571379023099594667, 9.618311670709962385928710045291

Graph of the $Z$-function along the critical line