Properties

Label 2-98736-1.1-c1-0-45
Degree $2$
Conductor $98736$
Sign $-1$
Analytic cond. $788.410$
Root an. cond. $28.0786$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s − 2·7-s + 9-s − 4·13-s − 2·15-s − 17-s + 2·19-s + 2·21-s − 2·23-s − 25-s − 27-s − 2·29-s + 4·31-s − 4·35-s + 6·37-s + 4·39-s − 6·41-s + 2·43-s + 2·45-s − 3·49-s + 51-s − 12·53-s − 2·57-s + 14·59-s − 6·61-s − 2·63-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s − 0.755·7-s + 1/3·9-s − 1.10·13-s − 0.516·15-s − 0.242·17-s + 0.458·19-s + 0.436·21-s − 0.417·23-s − 1/5·25-s − 0.192·27-s − 0.371·29-s + 0.718·31-s − 0.676·35-s + 0.986·37-s + 0.640·39-s − 0.937·41-s + 0.304·43-s + 0.298·45-s − 3/7·49-s + 0.140·51-s − 1.64·53-s − 0.264·57-s + 1.82·59-s − 0.768·61-s − 0.251·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 98736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 98736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(98736\)    =    \(2^{4} \cdot 3 \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(788.410\)
Root analytic conductor: \(28.0786\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 98736,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.87191787127954, −13.56497235826978, −12.89717119990056, −12.66468591386228, −12.10902076127627, −11.51693384351502, −11.19131377640237, −10.40107028069551, −9.975453500838321, −9.637880727968895, −9.393358670172064, −8.554792066118497, −7.960381009551004, −7.376722750983598, −6.837790358249286, −6.340288041465554, −5.927195506387318, −5.371579972899672, −4.841909976290995, −4.300559511941333, −3.515388598600827, −2.895419645756734, −2.243088342201576, −1.703721717402216, −0.7687036860182527, 0, 0.7687036860182527, 1.703721717402216, 2.243088342201576, 2.895419645756734, 3.515388598600827, 4.300559511941333, 4.841909976290995, 5.371579972899672, 5.927195506387318, 6.340288041465554, 6.837790358249286, 7.376722750983598, 7.960381009551004, 8.554792066118497, 9.393358670172064, 9.637880727968895, 9.975453500838321, 10.40107028069551, 11.19131377640237, 11.51693384351502, 12.10902076127627, 12.66468591386228, 12.89717119990056, 13.56497235826978, 13.87191787127954

Graph of the $Z$-function along the critical line