Properties

Label 2-95550-1.1-c1-0-255
Degree $2$
Conductor $95550$
Sign $-1$
Analytic cond. $762.970$
Root an. cond. $27.6219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s + 12-s + 13-s + 16-s − 6·17-s + 18-s + 4·19-s + 24-s + 26-s + 27-s + 6·29-s − 8·31-s + 32-s − 6·34-s + 36-s − 2·37-s + 4·38-s + 39-s − 6·41-s − 8·43-s + 12·47-s + 48-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.288·12-s + 0.277·13-s + 1/4·16-s − 1.45·17-s + 0.235·18-s + 0.917·19-s + 0.204·24-s + 0.196·26-s + 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.176·32-s − 1.02·34-s + 1/6·36-s − 0.328·37-s + 0.648·38-s + 0.160·39-s − 0.937·41-s − 1.21·43-s + 1.75·47-s + 0.144·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(762.970\)
Root analytic conductor: \(27.6219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 95550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.85113804408597, −13.59601276515697, −13.29490791621026, −12.64693070166897, −12.13115761622722, −11.72101124463798, −11.14858842296965, −10.61915838368019, −10.22868241829747, −9.535662940943450, −8.998778338927748, −8.582009704479193, −8.081459701486160, −7.248136803965928, −7.082801437718019, −6.447816125736839, −5.856470036880914, −5.177814468528907, −4.802875444819918, −4.001741534204932, −3.721962687104667, −2.955409781057496, −2.463496735897515, −1.795985323413887, −1.119173932186612, 0, 1.119173932186612, 1.795985323413887, 2.463496735897515, 2.955409781057496, 3.721962687104667, 4.001741534204932, 4.802875444819918, 5.177814468528907, 5.856470036880914, 6.447816125736839, 7.082801437718019, 7.248136803965928, 8.081459701486160, 8.582009704479193, 8.998778338927748, 9.535662940943450, 10.22868241829747, 10.61915838368019, 11.14858842296965, 11.72101124463798, 12.13115761622722, 12.64693070166897, 13.29490791621026, 13.59601276515697, 13.85113804408597

Graph of the $Z$-function along the critical line