Properties

Label 2-9555-1.1-c1-0-232
Degree $2$
Conductor $9555$
Sign $-1$
Analytic cond. $76.2970$
Root an. cond. $8.73481$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s − 4-s + 5-s − 6-s − 3·8-s + 9-s + 10-s + 12-s − 13-s − 15-s − 16-s − 2·17-s + 18-s − 4·19-s − 20-s + 8·23-s + 3·24-s + 25-s − 26-s − 27-s + 6·29-s − 30-s + 5·32-s − 2·34-s − 36-s + 2·37-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s − 0.277·13-s − 0.258·15-s − 1/4·16-s − 0.485·17-s + 0.235·18-s − 0.917·19-s − 0.223·20-s + 1.66·23-s + 0.612·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s + 1.11·29-s − 0.182·30-s + 0.883·32-s − 0.342·34-s − 1/6·36-s + 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9555 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9555 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9555\)    =    \(3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(76.2970\)
Root analytic conductor: \(8.73481\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9555,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.89083098660104736735637779603, −6.65490194830115381999043036199, −5.88304083184638873137066666476, −5.00275853539637462933450778845, −4.88592167258958632098520377881, −3.98526711055699880009319600651, −3.14671228158974323033066489572, −2.33520881512419023373454064611, −1.14128050984593574535963726351, 0, 1.14128050984593574535963726351, 2.33520881512419023373454064611, 3.14671228158974323033066489572, 3.98526711055699880009319600651, 4.88592167258958632098520377881, 5.00275853539637462933450778845, 5.88304083184638873137066666476, 6.65490194830115381999043036199, 6.89083098660104736735637779603

Graph of the $Z$-function along the critical line