Properties

Label 2-94080-1.1-c1-0-70
Degree $2$
Conductor $94080$
Sign $-1$
Analytic cond. $751.232$
Root an. cond. $27.4086$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s − 6·11-s + 15-s + 4·17-s + 8·23-s + 25-s − 27-s + 2·29-s + 2·31-s + 6·33-s − 8·37-s + 2·41-s + 4·43-s − 45-s − 4·51-s + 2·53-s + 6·55-s + 10·59-s + 2·61-s − 12·67-s − 8·69-s − 14·73-s − 75-s − 2·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s − 1.80·11-s + 0.258·15-s + 0.970·17-s + 1.66·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s + 0.359·31-s + 1.04·33-s − 1.31·37-s + 0.312·41-s + 0.609·43-s − 0.149·45-s − 0.560·51-s + 0.274·53-s + 0.809·55-s + 1.30·59-s + 0.256·61-s − 1.46·67-s − 0.963·69-s − 1.63·73-s − 0.115·75-s − 0.225·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 94080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 94080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(94080\)    =    \(2^{7} \cdot 3 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(751.232\)
Root analytic conductor: \(27.4086\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 94080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.01604755436169, −13.40819038671527, −13.01197714467251, −12.66513383894273, −11.99817661265313, −11.74559610370769, −10.96932064506553, −10.65604680674988, −10.27004792556075, −9.775089808466737, −9.011222662781599, −8.531104401283314, −7.982609800091472, −7.408451228488919, −7.156834064063197, −6.464269703974976, −5.666723951353769, −5.371833062529921, −4.884821463459689, −4.324736501392006, −3.516331929095292, −2.931524367959786, −2.493057667601195, −1.462243464291978, −0.7699993034151816, 0, 0.7699993034151816, 1.462243464291978, 2.493057667601195, 2.931524367959786, 3.516331929095292, 4.324736501392006, 4.884821463459689, 5.371833062529921, 5.666723951353769, 6.464269703974976, 7.156834064063197, 7.408451228488919, 7.982609800091472, 8.531104401283314, 9.011222662781599, 9.775089808466737, 10.27004792556075, 10.65604680674988, 10.96932064506553, 11.74559610370769, 11.99817661265313, 12.66513383894273, 13.01197714467251, 13.40819038671527, 14.01604755436169

Graph of the $Z$-function along the critical line