| L(s)  = 1  |         − 5-s             + 6·11-s     + 13-s         + 4·17-s     − 4·19-s         − 4·23-s     + 25-s         − 4·29-s     − 8·31-s             − 6·37-s         − 10·41-s     + 12·43-s         + 2·47-s     − 7·49-s         − 12·53-s     − 6·55-s         + 2·59-s     − 14·61-s         − 65-s     − 4·67-s         + 6·71-s     + 10·73-s             + 8·79-s         − 6·83-s     − 4·85-s         + 2·89-s             + 4·95-s  + ⋯ | 
 
| L(s)  = 1  |         − 0.447·5-s             + 1.80·11-s     + 0.277·13-s         + 0.970·17-s     − 0.917·19-s         − 0.834·23-s     + 1/5·25-s         − 0.742·29-s     − 1.43·31-s             − 0.986·37-s         − 1.56·41-s     + 1.82·43-s         + 0.291·47-s     − 49-s         − 1.64·53-s     − 0.809·55-s         + 0.260·59-s     − 1.79·61-s         − 0.124·65-s     − 0.488·67-s         + 0.712·71-s     + 1.17·73-s             + 0.900·79-s         − 0.658·83-s     − 0.433·85-s         + 0.211·89-s             + 0.410·95-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 \)  |    | 
 | 5 |  \( 1 + T \)  |    | 
 | 13 |  \( 1 - T \)  |    | 
| good | 7 |  \( 1 + p T^{2} \)  |  1.7.a  | 
 | 11 |  \( 1 - 6 T + p T^{2} \)  |  1.11.ag  | 
 | 17 |  \( 1 - 4 T + p T^{2} \)  |  1.17.ae  | 
 | 19 |  \( 1 + 4 T + p T^{2} \)  |  1.19.e  | 
 | 23 |  \( 1 + 4 T + p T^{2} \)  |  1.23.e  | 
 | 29 |  \( 1 + 4 T + p T^{2} \)  |  1.29.e  | 
 | 31 |  \( 1 + 8 T + p T^{2} \)  |  1.31.i  | 
 | 37 |  \( 1 + 6 T + p T^{2} \)  |  1.37.g  | 
 | 41 |  \( 1 + 10 T + p T^{2} \)  |  1.41.k  | 
 | 43 |  \( 1 - 12 T + p T^{2} \)  |  1.43.am  | 
 | 47 |  \( 1 - 2 T + p T^{2} \)  |  1.47.ac  | 
 | 53 |  \( 1 + 12 T + p T^{2} \)  |  1.53.m  | 
 | 59 |  \( 1 - 2 T + p T^{2} \)  |  1.59.ac  | 
 | 61 |  \( 1 + 14 T + p T^{2} \)  |  1.61.o  | 
 | 67 |  \( 1 + 4 T + p T^{2} \)  |  1.67.e  | 
 | 71 |  \( 1 - 6 T + p T^{2} \)  |  1.71.ag  | 
 | 73 |  \( 1 - 10 T + p T^{2} \)  |  1.73.ak  | 
 | 79 |  \( 1 - 8 T + p T^{2} \)  |  1.79.ai  | 
 | 83 |  \( 1 + 6 T + p T^{2} \)  |  1.83.g  | 
 | 89 |  \( 1 - 2 T + p T^{2} \)  |  1.89.ac  | 
 | 97 |  \( 1 - 10 T + p T^{2} \)  |  1.97.ak  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−7.41633469552582203402256643432, −6.59753905753911166167850452117, −6.15364124770906443402251538884, −5.33495496533692237283085159750, −4.42459574871585198194433518643, −3.73201779829895235526832367992, −3.37005619717618287193603540906, −1.97486385532543851519595385271, −1.32921780028176395776312360341, 0, 
1.32921780028176395776312360341, 1.97486385532543851519595385271, 3.37005619717618287193603540906, 3.73201779829895235526832367992, 4.42459574871585198194433518643, 5.33495496533692237283085159750, 6.15364124770906443402251538884, 6.59753905753911166167850452117, 7.41633469552582203402256643432