Properties

Label 2-9360-1.1-c1-0-103
Degree $2$
Conductor $9360$
Sign $-1$
Analytic cond. $74.7399$
Root an. cond. $8.64522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 6·11-s + 13-s + 4·17-s − 4·19-s − 4·23-s + 25-s − 4·29-s − 8·31-s − 6·37-s − 10·41-s + 12·43-s + 2·47-s − 7·49-s − 12·53-s − 6·55-s + 2·59-s − 14·61-s − 65-s − 4·67-s + 6·71-s + 10·73-s + 8·79-s − 6·83-s − 4·85-s + 2·89-s + 4·95-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.80·11-s + 0.277·13-s + 0.970·17-s − 0.917·19-s − 0.834·23-s + 1/5·25-s − 0.742·29-s − 1.43·31-s − 0.986·37-s − 1.56·41-s + 1.82·43-s + 0.291·47-s − 49-s − 1.64·53-s − 0.809·55-s + 0.260·59-s − 1.79·61-s − 0.124·65-s − 0.488·67-s + 0.712·71-s + 1.17·73-s + 0.900·79-s − 0.658·83-s − 0.433·85-s + 0.211·89-s + 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9360\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(74.7399\)
Root analytic conductor: \(8.64522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9360,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41633469552582203402256643432, −6.59753905753911166167850452117, −6.15364124770906443402251538884, −5.33495496533692237283085159750, −4.42459574871585198194433518643, −3.73201779829895235526832367992, −3.37005619717618287193603540906, −1.97486385532543851519595385271, −1.32921780028176395776312360341, 0, 1.32921780028176395776312360341, 1.97486385532543851519595385271, 3.37005619717618287193603540906, 3.73201779829895235526832367992, 4.42459574871585198194433518643, 5.33495496533692237283085159750, 6.15364124770906443402251538884, 6.59753905753911166167850452117, 7.41633469552582203402256643432

Graph of the $Z$-function along the critical line