Properties

Label 2-92400-1.1-c1-0-177
Degree $2$
Conductor $92400$
Sign $-1$
Analytic cond. $737.817$
Root an. cond. $27.1628$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s + 11-s − 2·13-s − 6·17-s + 4·19-s + 21-s + 27-s + 6·29-s − 8·31-s + 33-s + 10·37-s − 2·39-s − 6·41-s + 8·43-s + 49-s − 6·51-s − 6·53-s + 4·57-s − 12·59-s + 2·61-s + 63-s − 4·67-s − 12·71-s + 10·73-s + 77-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s + 0.301·11-s − 0.554·13-s − 1.45·17-s + 0.917·19-s + 0.218·21-s + 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.174·33-s + 1.64·37-s − 0.320·39-s − 0.937·41-s + 1.21·43-s + 1/7·49-s − 0.840·51-s − 0.824·53-s + 0.529·57-s − 1.56·59-s + 0.256·61-s + 0.125·63-s − 0.488·67-s − 1.42·71-s + 1.17·73-s + 0.113·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(92400\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(737.817\)
Root analytic conductor: \(27.1628\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 92400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99691543596842, −13.77327897461753, −13.07838210905210, −12.72399270988011, −12.12541276439231, −11.62786205386885, −11.09051013265856, −10.72200402003888, −10.02994268066897, −9.499212731090237, −9.100500168002802, −8.684389483074310, −8.021134602983636, −7.530831772318947, −7.152473681712552, −6.464922226948986, −5.996706997113230, −5.231277745339017, −4.612694768793089, −4.324682725159243, −3.539421316437680, −2.909164240423841, −2.355596602319647, −1.720814630312896, −0.9960331115817504, 0, 0.9960331115817504, 1.720814630312896, 2.355596602319647, 2.909164240423841, 3.539421316437680, 4.324682725159243, 4.612694768793089, 5.231277745339017, 5.996706997113230, 6.464922226948986, 7.152473681712552, 7.530831772318947, 8.021134602983636, 8.684389483074310, 9.100500168002802, 9.499212731090237, 10.02994268066897, 10.72200402003888, 11.09051013265856, 11.62786205386885, 12.12541276439231, 12.72399270988011, 13.07838210905210, 13.77327897461753, 13.99691543596842

Graph of the $Z$-function along the critical line