| L(s) = 1 | + 3-s + 2·7-s − 2·9-s + 13-s + 6·17-s − 2·19-s + 2·21-s − 23-s − 5·27-s − 3·29-s − 5·31-s − 8·37-s + 39-s + 3·41-s + 8·43-s + 9·47-s − 3·49-s + 6·51-s − 6·53-s − 2·57-s + 12·59-s + 14·61-s − 4·63-s + 8·67-s − 69-s + 15·71-s + 7·73-s + ⋯ |
| L(s) = 1 | + 0.577·3-s + 0.755·7-s − 2/3·9-s + 0.277·13-s + 1.45·17-s − 0.458·19-s + 0.436·21-s − 0.208·23-s − 0.962·27-s − 0.557·29-s − 0.898·31-s − 1.31·37-s + 0.160·39-s + 0.468·41-s + 1.21·43-s + 1.31·47-s − 3/7·49-s + 0.840·51-s − 0.824·53-s − 0.264·57-s + 1.56·59-s + 1.79·61-s − 0.503·63-s + 0.977·67-s − 0.120·69-s + 1.78·71-s + 0.819·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.700094245\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.700094245\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 \) | |
| 5 | \( 1 \) | |
| 23 | \( 1 + T \) | |
| good | 3 | \( 1 - T + p T^{2} \) | 1.3.ab |
| 7 | \( 1 - 2 T + p T^{2} \) | 1.7.ac |
| 11 | \( 1 + p T^{2} \) | 1.11.a |
| 13 | \( 1 - T + p T^{2} \) | 1.13.ab |
| 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag |
| 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c |
| 29 | \( 1 + 3 T + p T^{2} \) | 1.29.d |
| 31 | \( 1 + 5 T + p T^{2} \) | 1.31.f |
| 37 | \( 1 + 8 T + p T^{2} \) | 1.37.i |
| 41 | \( 1 - 3 T + p T^{2} \) | 1.41.ad |
| 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai |
| 47 | \( 1 - 9 T + p T^{2} \) | 1.47.aj |
| 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g |
| 59 | \( 1 - 12 T + p T^{2} \) | 1.59.am |
| 61 | \( 1 - 14 T + p T^{2} \) | 1.61.ao |
| 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai |
| 71 | \( 1 - 15 T + p T^{2} \) | 1.71.ap |
| 73 | \( 1 - 7 T + p T^{2} \) | 1.73.ah |
| 79 | \( 1 - 10 T + p T^{2} \) | 1.79.ak |
| 83 | \( 1 - 6 T + p T^{2} \) | 1.83.ag |
| 89 | \( 1 + p T^{2} \) | 1.89.a |
| 97 | \( 1 - 10 T + p T^{2} \) | 1.97.ak |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.983687389547958570584900639493, −7.19608929896679897534137002661, −6.35048588072733178988878946803, −5.36293303976497589061756246538, −5.29855955183661024568355230021, −3.89262315281939720034218797583, −3.62101418956118882107808295444, −2.53146396761988851625487504556, −1.88901411479806197788792417079, −0.77061916926357720779204754017,
0.77061916926357720779204754017, 1.88901411479806197788792417079, 2.53146396761988851625487504556, 3.62101418956118882107808295444, 3.89262315281939720034218797583, 5.29855955183661024568355230021, 5.36293303976497589061756246538, 6.35048588072733178988878946803, 7.19608929896679897534137002661, 7.983687389547958570584900639493