Properties

Label 2-9200-1.1-c1-0-64
Degree $2$
Conductor $9200$
Sign $1$
Analytic cond. $73.4623$
Root an. cond. $8.57101$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·7-s − 2·9-s + 13-s + 6·17-s − 2·19-s + 2·21-s − 23-s − 5·27-s − 3·29-s − 5·31-s − 8·37-s + 39-s + 3·41-s + 8·43-s + 9·47-s − 3·49-s + 6·51-s − 6·53-s − 2·57-s + 12·59-s + 14·61-s − 4·63-s + 8·67-s − 69-s + 15·71-s + 7·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.755·7-s − 2/3·9-s + 0.277·13-s + 1.45·17-s − 0.458·19-s + 0.436·21-s − 0.208·23-s − 0.962·27-s − 0.557·29-s − 0.898·31-s − 1.31·37-s + 0.160·39-s + 0.468·41-s + 1.21·43-s + 1.31·47-s − 3/7·49-s + 0.840·51-s − 0.824·53-s − 0.264·57-s + 1.56·59-s + 1.79·61-s − 0.503·63-s + 0.977·67-s − 0.120·69-s + 1.78·71-s + 0.819·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9200\)    =    \(2^{4} \cdot 5^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(73.4623\)
Root analytic conductor: \(8.57101\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.700094245\)
\(L(\frac12)\) \(\approx\) \(2.700094245\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
23 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.983687389547958570584900639493, −7.19608929896679897534137002661, −6.35048588072733178988878946803, −5.36293303976497589061756246538, −5.29855955183661024568355230021, −3.89262315281939720034218797583, −3.62101418956118882107808295444, −2.53146396761988851625487504556, −1.88901411479806197788792417079, −0.77061916926357720779204754017, 0.77061916926357720779204754017, 1.88901411479806197788792417079, 2.53146396761988851625487504556, 3.62101418956118882107808295444, 3.89262315281939720034218797583, 5.29855955183661024568355230021, 5.36293303976497589061756246538, 6.35048588072733178988878946803, 7.19608929896679897534137002661, 7.983687389547958570584900639493

Graph of the $Z$-function along the critical line