Properties

Label 2-91600-1.1-c1-0-22
Degree $2$
Conductor $91600$
Sign $-1$
Analytic cond. $731.429$
Root an. cond. $27.0449$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s − 2·9-s + 5·11-s + 2·13-s + 3·17-s − 19-s − 2·21-s − 2·23-s + 5·27-s − 8·31-s − 5·33-s + 6·37-s − 2·39-s − 12·41-s + 43-s − 10·47-s − 3·49-s − 3·51-s − 10·53-s + 57-s + 4·59-s + 5·61-s − 4·63-s − 4·67-s + 2·69-s − 71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s − 2/3·9-s + 1.50·11-s + 0.554·13-s + 0.727·17-s − 0.229·19-s − 0.436·21-s − 0.417·23-s + 0.962·27-s − 1.43·31-s − 0.870·33-s + 0.986·37-s − 0.320·39-s − 1.87·41-s + 0.152·43-s − 1.45·47-s − 3/7·49-s − 0.420·51-s − 1.37·53-s + 0.132·57-s + 0.520·59-s + 0.640·61-s − 0.503·63-s − 0.488·67-s + 0.240·69-s − 0.118·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91600\)    =    \(2^{4} \cdot 5^{2} \cdot 229\)
Sign: $-1$
Analytic conductor: \(731.429\)
Root analytic conductor: \(27.0449\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 91600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
229 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.28634696337169, −13.77151128598438, −12.92315233408478, −12.64758593634317, −11.94191829211205, −11.48384483032731, −11.32993677663499, −10.89407139115071, −9.998716758075215, −9.802599077317579, −8.941184884279370, −8.656055553589215, −8.122392474496801, −7.573897188833572, −6.855107805590827, −6.363447819655395, −5.975313261532267, −5.357273807322022, −4.844113797682347, −4.269623869583062, −3.474452166287194, −3.264444834796321, −2.077918677193293, −1.588991186228221, −0.9430078677251465, 0, 0.9430078677251465, 1.588991186228221, 2.077918677193293, 3.264444834796321, 3.474452166287194, 4.269623869583062, 4.844113797682347, 5.357273807322022, 5.975313261532267, 6.363447819655395, 6.855107805590827, 7.573897188833572, 8.122392474496801, 8.656055553589215, 8.941184884279370, 9.802599077317579, 9.998716758075215, 10.89407139115071, 11.32993677663499, 11.48384483032731, 11.94191829211205, 12.64758593634317, 12.92315233408478, 13.77151128598438, 14.28634696337169

Graph of the $Z$-function along the critical line