Dirichlet series
| L(s) = 1 | + 6·13-s + 2·17-s − 4·19-s + 4·23-s − 6·29-s − 6·37-s − 2·41-s + 4·43-s − 8·47-s − 2·53-s − 12·59-s − 6·61-s + 4·67-s + 12·71-s + 10·73-s − 8·79-s + 12·83-s + 14·89-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
| L(s) = 1 | + 1.66·13-s + 0.485·17-s − 0.917·19-s + 0.834·23-s − 1.11·29-s − 0.986·37-s − 0.312·41-s + 0.609·43-s − 1.16·47-s − 0.274·53-s − 1.56·59-s − 0.768·61-s + 0.488·67-s + 1.42·71-s + 1.17·73-s − 0.900·79-s + 1.31·83-s + 1.48·89-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
Functional equation
Invariants
| Degree: | \(2\) |
| Conductor: | \(88200\) = \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\) |
| Sign: | $-1$ |
| Analytic conductor: | \(704.280\) |
| Root analytic conductor: | \(26.5382\) |
| Motivic weight: | \(1\) |
| Rational: | yes |
| Arithmetic: | yes |
| Character: | Trivial |
| Primitive: | yes |
| Self-dual: | yes |
| Analytic rank: | \(1\) |
| Selberg data: | \((2,\ 88200,\ (\ :1/2),\ -1)\) |
Particular Values
| \(L(1)\) | \(=\) | \(0\) |
| \(L(\frac12)\) | \(=\) | \(0\) |
| \(L(\frac{3}{2})\) | not available | |
| \(L(1)\) | not available |
Euler product
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | |
|---|---|---|---|
| bad | 2 | \( 1 \) | |
| 3 | \( 1 \) | ||
| 5 | \( 1 \) | ||
| 7 | \( 1 \) | ||
| good | 11 | \( 1 + p T^{2} \) | 1.11.a |
| 13 | \( 1 - 6 T + p T^{2} \) | 1.13.ag | |
| 17 | \( 1 - 2 T + p T^{2} \) | 1.17.ac | |
| 19 | \( 1 + 4 T + p T^{2} \) | 1.19.e | |
| 23 | \( 1 - 4 T + p T^{2} \) | 1.23.ae | |
| 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g | |
| 31 | \( 1 + p T^{2} \) | 1.31.a | |
| 37 | \( 1 + 6 T + p T^{2} \) | 1.37.g | |
| 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c | |
| 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae | |
| 47 | \( 1 + 8 T + p T^{2} \) | 1.47.i | |
| 53 | \( 1 + 2 T + p T^{2} \) | 1.53.c | |
| 59 | \( 1 + 12 T + p T^{2} \) | 1.59.m | |
| 61 | \( 1 + 6 T + p T^{2} \) | 1.61.g | |
| 67 | \( 1 - 4 T + p T^{2} \) | 1.67.ae | |
| 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am | |
| 73 | \( 1 - 10 T + p T^{2} \) | 1.73.ak | |
| 79 | \( 1 + 8 T + p T^{2} \) | 1.79.i | |
| 83 | \( 1 - 12 T + p T^{2} \) | 1.83.am | |
| 89 | \( 1 - 14 T + p T^{2} \) | 1.89.ao | |
| 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac | |
| show more | |||
| show less | |||
Imaginary part of the first few zeros on the critical line
−13.98368151167920, −13.71418819641157, −13.08756877411854, −12.74653077764400, −12.25744394403634, −11.55352000247456, −11.10752984901368, −10.73036480240093, −10.33570535772501, −9.503815911672814, −9.138191390659689, −8.646603607334598, −8.093766563030481, −7.670749984139113, −6.949703947407890, −6.354405464739457, −6.100550771946813, −5.308933154431321, −4.890897162254159, −4.094007516441233, −3.539620676261821, −3.203934295942957, −2.227813590531845, −1.613855416925463, −0.9742294260013086, 0, 0.9742294260013086, 1.613855416925463, 2.227813590531845, 3.203934295942957, 3.539620676261821, 4.094007516441233, 4.890897162254159, 5.308933154431321, 6.100550771946813, 6.354405464739457, 6.949703947407890, 7.670749984139113, 8.093766563030481, 8.646603607334598, 9.138191390659689, 9.503815911672814, 10.33570535772501, 10.73036480240093, 11.10752984901368, 11.55352000247456, 12.25744394403634, 12.74653077764400, 13.08756877411854, 13.71418819641157, 13.98368151167920