Properties

Label 2-87360-1.1-c1-0-11
Degree $2$
Conductor $87360$
Sign $1$
Analytic cond. $697.573$
Root an. cond. $26.4116$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 7-s + 9-s + 4·11-s − 13-s − 15-s + 2·17-s − 4·19-s − 21-s + 25-s + 27-s − 6·29-s − 8·31-s + 4·33-s + 35-s − 6·37-s − 39-s + 10·41-s − 4·43-s − 45-s + 49-s + 2·51-s − 6·53-s − 4·55-s − 4·57-s − 4·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.277·13-s − 0.258·15-s + 0.485·17-s − 0.917·19-s − 0.218·21-s + 1/5·25-s + 0.192·27-s − 1.11·29-s − 1.43·31-s + 0.696·33-s + 0.169·35-s − 0.986·37-s − 0.160·39-s + 1.56·41-s − 0.609·43-s − 0.149·45-s + 1/7·49-s + 0.280·51-s − 0.824·53-s − 0.539·55-s − 0.529·57-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 87360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 87360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(87360\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(697.573\)
Root analytic conductor: \(26.4116\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 87360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.717310267\)
\(L(\frac12)\) \(\approx\) \(1.717310267\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.14113255917567, −13.29403444647512, −12.92935907446561, −12.44332391247263, −12.03562914033444, −11.45349921194862, −10.84307412382718, −10.56146817227062, −9.586441823024621, −9.492983790018381, −8.916454911525419, −8.421570205461774, −7.831822911803556, −7.238850415451973, −6.945112810766869, −6.231907200647270, −5.736207429100915, −5.036009145666134, −4.210720156064118, −3.966883058172684, −3.341095450188736, −2.798390330033828, −1.873477822245151, −1.484269631991217, −0.3951138081343264, 0.3951138081343264, 1.484269631991217, 1.873477822245151, 2.798390330033828, 3.341095450188736, 3.966883058172684, 4.210720156064118, 5.036009145666134, 5.736207429100915, 6.231907200647270, 6.945112810766869, 7.238850415451973, 7.831822911803556, 8.421570205461774, 8.916454911525419, 9.492983790018381, 9.586441823024621, 10.56146817227062, 10.84307412382718, 11.45349921194862, 12.03562914033444, 12.44332391247263, 12.92935907446561, 13.29403444647512, 14.14113255917567

Graph of the $Z$-function along the critical line